【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線DG相交于點D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____.
【答案】1.5
【解析】
如圖,連接CD,BD,根據(jù)角平分線的性質(zhì)可得DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,即可得AE=AF,然后根據(jù)垂直平分線的性質(zhì)可得CD=BD,則可通過HL證明Rt△CDF≌Rt△BDE,得到BE=CF,然后即可得到答案.
如圖,連接CD,BD,
∵AD是∠BAC的平分線,DE⊥AB,DF⊥AC,
∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,
∴AE=AF,
∵DG是BC的垂直平分線,
∴CD=BD,
在Rt△CDF和Rt△BDE中,
,
∴Rt△CDF≌Rt△BDE(HL),
∴BE=CF,
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,
∵AB=6,AC=3,
∴BE=1.5.
故答案為:1.5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一次函數(shù)的圖像經(jīng)過點A(-1,1),下列各點中在該函數(shù)圖象上的是( )
A. (1,5) B. (2,5) C. (-2,-2) D. (0,1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,和都是等邊三角形,連接AC,DE,CD.
(1)猜想AC與DE的數(shù)量關(guān)系,并說明理由。
(2)給出定義:若一個四邊形中存在一組鄰邊的平方等于一條對角線的平方,則這個四邊形為勾股四邊形.如圖,若,求證:四邊形ABCD是勾股四邊形。
(3)設(shè),,的面積分別是,若,試探究與之間滿足的等量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某市有一塊長為(2a+b)米,寬為(a+b)米的長方形地塊,規(guī)劃部門計劃將陰影部分進行綠化,中間將修建一座雕像.
(1)試用含a,b的代數(shù)式表示綠化的面積是多少平方米?
(2)若a=3,b=2,請求出綠化面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,點G是BC延長線上一點,連結(jié)AG,分別交BD、CD于點E、F,連結(jié)CE.
(1)求證:∠DAE=∠DCE;
(2)當CE=2EF時,EG與EF的等量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂線平分線交AB于點F,交BC的延長線于點E,連接AE,DF.
求證:(1)∠EAD=∠EDA;(2)DF//AC;(3)∠EAC=∠B.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】同學們都知道,|4―(―2)|表示4與-2的差的絕對值,實際上也可以理解為4與-2兩數(shù)在數(shù)軸上所對應的兩點之間的距離;同理|x―3|也可以理解為x與3兩數(shù)在數(shù)軸上所對應的兩點之間的距離,試探索并完成填空。
(1)求|8―(―3)|= ;|-3―5|= 。
(2)如圖,x是0到4之間(包括0,4)的一個數(shù),那么|x―1|+|x―2|+|x―3|+|x―4|的最小值等于多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y= x與雙曲線y= 的交點A的橫坐標為2
(1)求k的值
(2)如圖,過點P(m,3)(m>0)作x軸的垂線交雙曲線y= (x>0)于點M,交直線OA于點N
①連接OM,當OA=OM時,直接寫出PN﹣PM的值
②試比較PM與PN的大小,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com