【題目】如圖,直角梯形ABCD中,ADBC,ABBC,AD4,將腰CDD為中心逆時針旋轉(zhuǎn)90°DE,連結(jié)AE、CE,ADE的面積為12,則BC的長為_____

【答案】10

【解析】

D點作DFBC,垂足為F,過E點作EGAD,交AD的延長線與G點,由旋轉(zhuǎn)的性質(zhì)可知CDF≌△EDG,從而有CFEG,由ADE的面積可求EG,得出CF的長,由矩形的性質(zhì)得BFAD,根據(jù)BCBF+CF求解.

解:過D點作DFBC,垂足為F,過E點作EGAD,交AD的延長線與G點,

由旋轉(zhuǎn)的性質(zhì)可知CDED,

∵∠EDG+CDG=∠CDG+FDC90°

∴∠EDG=∠FDC,又∠DFC=∠G90°

∴△CDF≌△EDG,

CFEG

SADEAD×EG12,AD4,

EG6,則CFEG6

依題意得四邊形ABFD為矩形,∴BFAD4

BCBF+CF4+610

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等腰直角三角形,,為邊上一點,且,連結(jié),過點于點,交于點.,則的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC≠BC,點D和點A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,連接AD,求∠ADB的度數(shù).(不必解答)

(1)小聰先從特殊問題開始研究,當(dāng)α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構(gòu)造△ABD的軸對稱圖形△ABD′,連接CD′(如圖2),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識便可解決這個問題.

請結(jié)合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是   三角形;∠ADB的度數(shù)為   

(2)在原問題中,當(dāng)∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);

(3)在原問題中,過點A作直線AE⊥BD,交直線BDE,其他條件不變?nèi)?/span>BC=7,AD=2.請直接寫出線段BE的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點C是圓上任意一點,點DAC中點,ODAC于點E,BDAC于點F,若BF1.25DF,則tanABD的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的O分別交BC,AC于點D,E,連結(jié)EB,交OD于點F

1)求證:ODBE

2)若DE=AB=6,求AE的長.

3)若CDE的面積是OBF面積的,求線段BCAC長度之間的等量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作與證明:如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.

(1)連接AE,求證:AEF是等腰三角形;

猜想與發(fā)現(xiàn):

(2)在(1)的條件下,請判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.

結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;

結(jié)論2:DM、MN的位置關(guān)系是 ;

拓展與探究:

(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD中,點E、F、G分別在邊ABAD、CD上,EGBF交于點I,AE=2,BF=EG,DG>AE,則DI的最小值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三角形ABC中,AB=24,AC=18,D是AC上一點,AD=12,在AB上取一點E,使A、D、E三點組成的三角形與ABC相似,則AE=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.

(1)求一次至少購買多少只計算器,才能以最低價購買?

(2)求寫出該文具店一次銷售x(x10)只時,所獲利潤y(元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當(dāng)10x50時,為了獲得最大利潤,店家一次應(yīng)賣多少只?這時的售價是多少?

查看答案和解析>>

同步練習(xí)冊答案