如圖.拋物線與x軸相交于點A和點B,與y軸交于點C.

(1)求點A、點B和點C的坐標.

(2)求直線AC的解析式.

(3)設點M是第二象限內(nèi)拋物線上的一點,且=6,求點M的坐標.

(4)若點P在線段BA上以每秒1個單位長度的速度從A運動(不與B,A重合),同時,點Q在射線AC上以每秒2個單位長度的速度從A向C運動.設運動的時間為t秒,請求出△APQ的面積S與t的函數(shù)關系式,并求出當t為何值時, △APQ的面積最大,最大面積是多少?

 (1)令,(x+3)(x-1)=0,

A(-3,0)  B.(1,0),C(0,3)

(2)設直線AC的解析式為y=kx+b

由題意,得   解之得,y=x+3.

(3)設M點的坐標為(x, )

AB=4,因為M在第二象限,所以>0,[所以=6

解之,得,

當x=0時,y=3(不合題意)

當x=-2時,y=3.所以M點的坐標為(-2,3)[來

  

(4)由題意,得AB=4,PB=4-t,

∵AO=3,CO=3,

∴△ABC是等腰直角三角形,

AQ=2t,

所以Q點的縱坐標為t,

               S=(1<t<4)

            

當t=2時△APQ最大,最大面積是.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知A(5,-4),⊙A與x軸分別相交于點B、C,⊙A與y軸相且于點D,
(1)求證過D、B、C三點的拋物線的解析式;
(2)連接BD,求tan∠BDC的值;
(3)點P是拋物線頂點,線段DE是直徑,直線PC與直線DE相交于點F,
∠PFD的平分線FG交DC于G,求sin∠CGF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點B(-2,0)C(-4,0),過點B,C的⊙M與直線x=-1相切于點精英家教網(wǎng)A(A在第二象限),點A關于x軸的對稱點是A1,直線AA1與x軸相交點P
(1)求證:點A1在直線MB上;
(2)求以M為頂點且過A1的拋物線的解析式;
(3)設過點A1且平行于x軸的直線與(2)中的拋物線的另一交點為D,當⊙D與⊙M相切時,求⊙D的半徑和切點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•相城區(qū)一模)如圖,拋物線y=
1
4
x2+bx+c的頂點為M,對稱軸是直線x=1,與x軸的交點為A(-3,0)和B.將拋物線y=
1
4
x2+bx+c繞點B逆時針方向旋轉90°,點M1,A1為點M,A旋轉后的對應點,旋轉后的拋物線與y軸相交于C,D兩點.
(1)寫出點B的坐標及求拋物線y=
1
4
x2+bx+c的解析式;
(2)求證:A,M,A1三點在同一直線上;
(3)設點P是旋轉后拋物線上DM1之間的一動點,是否存在一點P,使四邊形PM1MD的面積最大?如果存在,請求出點P的坐標及四邊形PM1MD的面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(-3,0)、B(1,0)兩點,與y軸相交點C(0,
3
).
(1)求該二次函數(shù)解析式;
(2)連接AC、BC,點M、N分別是線段AB、BC上的動點,且始終滿足BM=BN,連接MN.
①將△BMN沿MN翻折,B點能恰好落在AC邊上的P處嗎?若能,請判斷四邊形BMPN的形狀并求出PN的長;若不能,請說明理由.   
②將△BMN沿MN翻折,B點能恰好落在此拋物線上嗎?若能,請直接寫出此時B點關于MN的對稱點Q的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•相城區(qū)模擬)如圖,已知二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,交y軸于點C,過點C作CD⊥y軸交該拋物線于點D,且AB=2,CD=4.
(1)該拋物線的對稱軸為
直線x=2
直線x=2
,B點坐標為(
3,0
3,0
),CO=
3
3
;
(2)若P為線段OC上的一個動點,四邊形PBQD是平行四邊形,連接PQ.試探究:
①是否存在這樣的點P,使得PQ2=PB2+PD2?若存在,求出此時點P的坐標;若不存在,請說明理由.
②當PQ長度最小時,求出此時點Q的坐標.

查看答案和解析>>

同步練習冊答案