如圖,在Rt△ABC中,CD是斜邊AB上的高,AE平分∠CAB且交CD于點G,EF⊥AB于點F,則下列結(jié)論中不正確的是( 。
分析:根據(jù)角平分線求出CE=EF,∠CAE=∠BAE,根據(jù)三角形內(nèi)角和定理求出∠B=∠ACD,根據(jù)三角形外角性質(zhì)求出∠CGE=∠CEG,根據(jù)等腰三角形性質(zhì)推出CG=CE,根據(jù)勾股定理求出AC=AF,即可得出選項.
解答:解:A、∵CD⊥AB,
∴∠ADC=∠ACB=90°,
∴∠CAD+∠ACD=90°,∠B+∠CAB=90°,
∴∠ACD=∠B,正確,故本選項錯誤;
B、∵AE平分∠CAB,∠ACB=90°,EF⊥AB,
∴CE=EF,
∵AE平分∠CAB,
∴∠CAE=∠BAE,
∵∠B=∠ACD,
∴∠ACD+∠CAE=∠B+∠BAE,
即∠CHE=∠CEH,
∴CE=EF,正確,故本選項錯誤;
C、在Rt△ACE和Rt△AFE中,AE=AE,CE=EF,由勾股定理得:AC=AF,正確,故本選項錯誤;
D、CG=EF>GD,錯誤,故本選項正確.
故選D.
點評:本題考查的是角平分線的性質(zhì),熟知角的平分線上的點到角的兩邊的距離相等是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運(yùn)動,到點B停止.點P在AD上以
5
cm/s的速度運(yùn)動,在折線DE-EB上以1cm/s的速度運(yùn)動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運(yùn)動時間為t(s).
(1)當(dāng)點P在線段DE上運(yùn)動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案