【題目】在平面直角坐標(biāo)系中,點A(1,0),已知拋物線y=﹣x2+mx﹣2m(m是常數(shù)),頂點為P.
(1)當(dāng)拋物線經(jīng)過點A時,求頂點P坐標(biāo);
(2)等腰Rt△AOB,點B在第四象限,且OA=OB.當(dāng)拋物線與線段OB有且僅有兩個公共點時,求m滿足的條件;
(3)無論m取何值,該拋物線都經(jīng)過定點H.當(dāng)∠AHP=45°,求此拋物線解析式.
【答案】(1)頂點P坐標(biāo)(﹣,);(2)m>2﹣3;(3)y=﹣x2+x﹣或y=﹣x2+x﹣
【解析】
(1)將點A坐標(biāo)代入解析式,可求m的值,即可求解;
(2)先求出點B坐標(biāo),由拋物線與線段OB有且僅有兩個公共點,可列不等式,可求解;
(3)當(dāng)x=2時,y=﹣4+2m﹣2m=﹣4,則拋物線都經(jīng)過定點H(2,﹣4),分點P在AH的左側(cè)或右側(cè)兩種情況討論,構(gòu)造全等三角形,求出BH解析式,即可求解.
解:(1)∵拋物線經(jīng)過點A,
∴0=﹣1+m﹣2m,
∴m=﹣1,
∴拋物線解析式為:y=﹣x2﹣x+2=﹣(x+)2+,
∴頂點P坐標(biāo)(﹣,);
(2)∵點A(1,0),OA=OB,
∴點B(1,﹣1)
設(shè)直線OB的解析式為
將點B代入得
∴直線OB解析式為:y=﹣x,
∵拋物線與線段OB有且僅有兩個公共點,
∴﹣x=﹣x2+mx﹣2m,
∴△=(m+1)2﹣8m>0,
∴m>2﹣3,或m<﹣2﹣3,
∵拋物線與線段OB有且僅有兩個公共點,
∴
∴m≥0,
∴m>2﹣3,
(3)∵當(dāng)x=2時,y=﹣4+2m﹣2m=﹣4,
∴拋物線都經(jīng)過定點H(2,﹣4),
若點P在AH的左側(cè),如圖1,過點A作AB⊥PH,過點B作BD⊥OA,過點H作HC⊥BD于C,
∵∠AHP=45°,AB⊥PH,
∴∠BAH=∠AHB=45°,
∴AB=BH,
∵∠DBA+∠CBH=90°,∠DBA+∠DAB=90°,
∴∠DAB=∠CBH,且AB=BH,∠ADB=∠BCH=90°,
∴△DAB≌△CBH(AAS)
∴AD=BC,BD=CH,
∵BC+BD=4,CH﹣AD=1,
∴BD=CH=,BC=AD=,
∴點B(﹣,﹣)
設(shè)直線BH解析式為:y=kx+b,
∴
解得:
∴直線BH解析式為:y=﹣x﹣,
∵y=﹣x2+mx﹣2m
∴P(,)
∵點P(,)在直線BH上,
∴=﹣×﹣
∴m1=4,m2=,
∵當(dāng)m=4時,點P(2,﹣4)與點H重合,
∴m=
∴拋物線解析式:y=﹣x2+x﹣,
若點P在AH的右側(cè),如圖2,
同理可求:直線BH解析式為:y=x﹣,
∵點P(,)在直線BH上,
∴=×﹣,
∴m1=4,m2=,
∴拋物線解析式:y=﹣x2+x﹣,
綜上所述,拋物線解析式為y=﹣x2+x﹣或y=﹣x2+x﹣.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點,連接CD,點O是CD的中點,到點O的距離等于OC的所有點組成圖形M,圖形M分別交AC,BC于點E,F兩點,過點F作FG⊥AB于點G.
(1)試判斷FG與圖形M的位置關(guān)系,并說明理由;
(2)若AC=3,∠B=30°,求FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】使用家用燃?xì)庠顭_同一壺水所需的燃?xì)饬?/span>(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃?xì)庠顭_同一壺水的旋鈕角度與燃?xì)饬?/span>的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃?xì)庠顭_一壺水最節(jié)省燃?xì)獾男o角度約為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為,A、B為⊙O上兩點,C為⊙O內(nèi)一點,AC⊥BC,AC=,BC=.
(1)判斷點O、C、B的位置關(guān)系;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3.直徑為5的⊙O分別與AC、BC相切于點F、E,與AB交于點M、N,過點O作OP⊥MN于P,則OP的長為( 。
A.1B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺乙種品牌空調(diào)的進價比每臺甲種品牌空調(diào)的進價高20%,用7200元購進的乙種品牌空調(diào)數(shù)量比用3000元購進的甲種品牌空調(diào)數(shù)量多2臺.
(1)求甲、乙兩種品牌空調(diào)的進貨價;
(2)該商場擬用不超過16000元購進甲、乙兩種品牌空調(diào)共10臺進行銷售,其中甲種品牌空調(diào)的售價為2500元/臺,乙種品牌空調(diào)的售價為3500元/臺.請您幫該商場設(shè)計一種進貨方案,使得在售完這10臺空調(diào)后獲利最大,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形ABCD的對角線AC經(jīng)過坐標(biāo)原點O,矩形的邊分別平行于坐標(biāo)軸,點B在函數(shù)y=(k≠0,x>0)的圖像上,點D的坐標(biāo)為(-4,1),則K的值為( )
A.B.C.4D.-4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有兩個相鄰內(nèi)角和等于另兩個內(nèi)角和的一半的四邊形稱為半四邊形,這兩個角的夾邊稱為對半線.
(1)如圖1,在對半四邊形中,,求與的度數(shù)之和;
(2)如圖2,為銳角的外心,過點的直線交,于點,,,求證:四邊形是對半四邊形;
(3)如圖3,在中,,分別是,上一點,,,為的中點,,當(dāng)為對半四邊形的對半線時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點在的直徑延長線上,點為上,過作,與的延長線相交于,為的切線,,.
(1)求證:;
(2)求的長;
(3)若的平分線與交于點,為的內(nèi)心,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com