【題目】如圖,直線AB,AD與⊙O相切于點(diǎn)B,D,C為⊙O上一點(diǎn),且∠BCD=140°,則∠A的度數(shù)是( 。

A.70°
B.105°
C.100°
D.110°

【答案】C
【解析】解:過點(diǎn)B作直徑BE,連接OD、DE.
∵B、C、D、E共圓,∠BCD=140°,
∴∠E=180°-140°=40°.
∴∠BOD=80°.
∵AB、AD與⊙O相切于點(diǎn)B、D,
∴∠OBA=∠ODA=90°.
∴∠A=360°-90°-90°-80°=100°.
故選C.
【考點(diǎn)精析】通過靈活運(yùn)用圓周角定理和圓內(nèi)接四邊形的性質(zhì),掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;把圓分成n(n≥3):1、依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形2、經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高新企業(yè)員工的工資由基礎(chǔ)工資、績效工資和工齡工資三部分組成,其中工齡工資的制定充分了考慮員工對(duì)企業(yè)發(fā)展的貢獻(xiàn),同時(shí)提高員工的積極性,控制員工的流動(dòng)率,對(duì)具有中職以上學(xué)歷員工制定如下的工齡工資方案. Ⅰ.工齡工資分為社會(huì)工齡工資和企業(yè)工齡工資;
Ⅱ.社會(huì)工齡=參加本企業(yè)工作時(shí)年齡﹣18,企業(yè)工齡=現(xiàn)年年齡﹣參加本企業(yè)工作時(shí)年齡.
Ⅲ.當(dāng)年工作時(shí)間計(jì)入當(dāng)年工齡
Ⅳ.社會(huì)工齡工資y1(元/月)與社會(huì)工齡x(年)之間的函數(shù)關(guān)系式如①圖所示,企業(yè)工齡工資y2(元/月)與企業(yè)工齡x(年)之間的函數(shù)關(guān)系如圖②所示.
請(qǐng)解決以下問題

(1)求出y1、y2與工齡x之間的函數(shù)關(guān)系式;
(2)現(xiàn)年28歲的高級(jí)技工小張從18歲起一直實(shí)行同樣工齡工資制度的外地某企業(yè)工作,為了方便照顧老人與小孩,今年小張回鄉(xiāng)應(yīng)聘到該企業(yè),試計(jì)算第一年工齡工資每月下降多少元?
(3)已經(jīng)在該企業(yè)工作超過3年的李工程師今年48歲,試求出他的工資最高每月多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從一張腰長為60cm,頂角為120°的等腰三角形鐵皮OAB中剪出一個(gè)最大的扇形OCD,用此剪下的扇形鐵皮圍成一個(gè)圓錐的側(cè)面(不計(jì)損耗),則該圓錐的高為( 。

A.10cm
B.15cm
C.10 cm
D.20 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,若∠A=∠D,CD=3,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB為直徑,C為⊙O上一點(diǎn).

(1)如圖1.過點(diǎn)C作⊙O的切線,與AB的延長線相交于點(diǎn)P,若∠CAB=27°,求∠P的大。
(2)如圖2,D為 上一點(diǎn),且OD經(jīng)過AC的中點(diǎn)E,連接DC并延長,與AB的延長線相交于點(diǎn)P,若∠CAB=10°,求∠P的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一條排水管的截面如圖所示.已知排水管的半徑OB=10,水面寬AB=16.求截面圓心O到水面的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)同心圓,大圓的弦AB與小圓相切于點(diǎn)P,大圓的弦CD經(jīng)過點(diǎn)P,且CD=13,PD=4,則兩圓組成的圓環(huán)的面積是(
A.16π
B.36π
C.52π
D.81π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小華為了測量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達(dá)坡頂D處.已知斜坡的坡角為15°.小華的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(計(jì)算結(jié)果精確到1m) (參考數(shù)據(jù):sin15°= ,cos15°= ,tan15°=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)營一批進(jìn)價(jià)是30元/件的商品,在市場試銷中的日銷售量y件與銷售價(jià)x元之間滿足一次函數(shù)關(guān)系.
(1)請(qǐng)借助以下記錄確定y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

x

35

40

45

50

y

57

42

27

12


(2)若日銷售利潤為P元,根據(jù)上述關(guān)系寫出P關(guān)于x的函數(shù)關(guān)系式,并指出當(dāng)銷售單價(jià)x為多少元時(shí),才能獲得最大的銷售利潤?

查看答案和解析>>

同步練習(xí)冊(cè)答案