【題目】解方程組:
(1)
(2)
【答案】(1);(2)
【解析】
(1),由①得2x-y=3③,②-③可求得x,將x值代入①可得y值,即可求得方程組的解.
(2),先將①×12去分母,將分式方程化為整式方程,得3x+4y=84③,將②×6,由分式方程化為整式方程,得2x+3y=48④,③和④再利用加減消元法即可求解方程組的解.
(1)
由①,得2x-y=3③
②-③,得x=5
將x=5代入①,得2×5-y=3
∴y=7
故方程組的解為:
故答案為:
(2)
①×12,得3x+4y=84③
②×6,得2x+3y=48④
③×2,得6x+8y=168⑤
④×3,得6x+9y=144⑥
⑤-⑥,得y=-24
將y=-24代入①,得
∴x=60
故方程組的解為:
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)M(m,n)在反比例函數(shù)y=﹣ 上,其中m是分式方程 ﹣1= 的根,將M點(diǎn)先向上平移4個(gè)單位,再向左平移1個(gè)單位,得到點(diǎn)N.若點(diǎn)M,N都在直線y=kx+b上,直線解析式為( )
A.y=﹣ x﹣
B.y= x+
C.y=4x﹣5
D.y=﹣4x+5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用我們學(xué)過的知識(shí),可以導(dǎo)出下面這個(gè)形式優(yōu)美的等式:a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2],該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對(duì)稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡潔、美觀.
(1)請你檢驗(yàn)說明這個(gè)等式的正確性.
(2)若a=2019,b=2020,c=2021,你能很快求出a2+b2+c2﹣ab﹣bc﹣ac的值嗎?
(3)若a﹣b=,b﹣c=,且a2+b2+c2=1,求ab+bc+ac的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D按逆時(shí)針方向旋轉(zhuǎn)90°得到△DCM.
(1)求證:EF=MF;(2)當(dāng)AE=1時(shí),求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你能比較與的大小嗎?為了解決這個(gè)問題,先把問題一般化.即比較與的大小(整數(shù)n≥1).然后,從分析n=1,n=2, n=3,……這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納、猜想,得出結(jié)論.
(1)通過計(jì)算,比較下列①到⑥各組中兩個(gè)數(shù)的大小:
① ② ③
④ ⑤ ⑥
(2)從(1)小題的結(jié)果歸納,請猜想與的大小關(guān)系:
(3)根據(jù)上面歸納猜想到的一般結(jié)論,可以得到:
_______ (填“>”、“=”或“<”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個(gè)長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成一個(gè)“回形”正方形(如圖2)
(1)觀察圖2請你寫出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是 ;
(2)根據(jù)(1)中的結(jié)論,若x+y=5,xy=,則x﹣y= ;
(3)拓展應(yīng)用:若(2019﹣m)2+(m﹣2020)2=15,求(2019﹣m)(m﹣2020)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題背景)
(1)如圖1的圖形我們把它稱為“8字形”,請說理證明∠A+∠B=∠C+∠D
(簡單應(yīng)用)
(2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度數(shù)(可直接使用問題(1)中的結(jié)論)
(問題探究)
(3)如圖3,直線BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A=30°,∠C=18°,則∠P的度數(shù)為
(拓展延伸)
(4)在圖4中,若設(shè)∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間的數(shù)量關(guān)系為 (用x、y表示∠P)
(5)在圖5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P與∠A、∠C的關(guān)系,直接寫出結(jié)論 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AH是⊙O的直徑,AE平分∠FAH,交⊙O于點(diǎn)E,過點(diǎn)E的直線FG⊥AF,垂足為F,B為半徑OH上一點(diǎn),點(diǎn)E,F(xiàn)分別在矩形ABCD的邊BC和CD上.
(1)求證:直線FG是⊙O的切線;
(2)若CD=10,EB=5,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三角形ABC中,D,E,F(xiàn)分別是BC,AC,AB上的點(diǎn),DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,則△DEF的面積與△ABC的面積之比等于 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com