如圖,在平面直角坐標系中,四邊形OABC是矩形,點B的坐標為(4,3).
(1)直接寫出A、C兩點的坐標;
(2)平行于對角線AC的直線m從原點O出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,設(shè)直線m與矩形OABC的兩邊分別交于點M、N,設(shè)直線m運動的時間為t(秒).
①若MN=AC,求t的值;
②設(shè)△OMN的面積為S,當t為何值時,S=

【答案】分析:(1)因為四邊形OABC是矩形且點B的坐標為(4,3),所以可知,OA=CB=4,OC=AB=3,故可知A、C兩點的坐標;
(2)①可以分為兩種情況:當M、N分別在OA、OC上時,可證明△OMN∽△OAC,由題意可求得OM的長,即可求得t的值;當M、N分別在AB、BC上時,可證明△BMN∽△BAC,由題意可求得BM的長,即可由相似三角形的性質(zhì)求得t的值,綜合以上兩種情況即是要求的t值.
②可以分為兩種情況:當M、N分別在OA、OC上時,可證明△OMN∽△OAC,由題意可求得OM、ON的長,即可求得面積的表達式,再由面積為可得t的值;當M、N分別在AB、BC上時,由△DAM∽△AOC,可得AM,由△BMN∽△BAC,可得BN,即可得BM、CN,由S=矩形OABC的面積-Rt△OAM的面積-Rt△MBN的面積-Rt△NCO的面積,可得關(guān)于t的表達式,再由面積為可得t的值,綜合以上兩種情況即是要求的t值.
解答:解:(1)A(4,0),C(0,3);
(2)①x軸正方向以每秒1個單位長度的速度運動,直線m運動的時間為t時,
可以分為兩種情況:
當M、N分別在OA、OC上時,如下圖所示:

∵直線m平行于對角線AC
∴△OMN∽△OAC
==
∴t=2s;
當M、N分別在AB、BC上時,如下圖所示:

∵直線m平行于對角線AC
∴△BMN∽△BAC
==
∴t=6
綜上所述,當t=2或6時,MN=AC
②當0<t≤4時,OM=t,
由△OMN∽△OAC,
,
∴ON=t,S==
∴t=2;
當4<t<8時,
如圖,∵OD=t,∴AD=t-4.

由△DAM∽△AOC,可得AM=(t-4)
∴BM=6-t.
由△BMN∽△BAC,可得BN=BM=8-t
∴CN=t-4
S=矩形OABC的面積-Rt△OAM的面積-Rt△MBN的面積-Rt△NCO的面積
=12--(8-t)(6-t)-
=-+3t,
∴-+3t=
解得
取t=4+2
故當t=2或4+2時,△OMN的面積S=
點評:本題考查了相似三角形的判定和性質(zhì)以及分類討論思想.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習冊答案