若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(-2,10),且一元二次方程ax2+bx+c=0的根為-和2,則該二次函數(shù)的解析關(guān)系式為   
【答案】分析:由題意可知二次函數(shù)與x軸的交點坐標(biāo)為(-,0)和(2,0),圖象又經(jīng)過點(-2,10),使用代入法可求解析式.
解答:解:利用交點式把二次函數(shù)關(guān)系式變?yōu)閥=a(x+)(x-2)
把點(-2,10)代入得:a=

點評:當(dāng)出現(xiàn)一元二次方程的兩根時,求二次函數(shù)解析式應(yīng)設(shè)為交點式比較簡便.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(0,-1),(5,-1),則它的對稱軸方程是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、若二次函數(shù)y=ax2+2x+c的值總是負(fù)值,則
a<0,ac>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•河北區(qū)模擬)若二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸有兩個不同的交點A(1,0)、B(-3,0),與y軸的負(fù)半軸交于點C,且S△ABC=6.
(Ⅰ)求該二次函數(shù)的解析式和頂點P的坐標(biāo);
(Ⅱ)經(jīng)過A、B、P三點畫⊙O′,求⊙O′的面積;
(Ⅲ)設(shè)拋物線上有一動點M(a,b),連AM,BM,試判斷△ABM能否是直角三角形?若能,求出M點的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•大連)若二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則直線y=bx-c不經(jīng)過(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點O為坐標(biāo)原點,∠AOB=30°,∠B=90°,且點A的坐標(biāo)為(2,0).
(1)求點B的坐標(biāo);
(2)若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A,B,O三點,求此二次函數(shù)的解析式;
(3)在(2)中的二次函數(shù)圖象的OB段(不包括O,B點)上,是否存在一點C,使得四邊形ABCO的面積最大?若存在,求出點C的坐標(biāo)及四邊形ABCO的最大面積;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案