【題目】某市對一大型超市銷售的甲、乙、丙3種大米進行質量檢測.共抽查大米200袋,質量評定分為A、B兩個等級(A級優(yōu)于B級),相應數據的統(tǒng)計圖如下:
根據所給信息,解決下列問題:
(1)a= ,b= ;
(2)已知該超市現有乙種大米750袋,根據檢測結果,請你估計該超市乙種大米中有多少袋B級大米?
(3)對于該超市的甲種和丙種大米,你會選擇購買哪一種?運用統(tǒng)計知識簡述理由.
【答案】(1)55;5。
(2)100袋。
(3)丙種大米。理由見解析。
【解析】
試題(1)根據甲的圓心角度數是108°,求出所占的百分比,再根據總袋數求出甲種大米的袋數,即可求出a、b的值:
∵甲的圓心角度數是108°,所占的百分比是×100=30%,
∴甲種大米的袋數是:200×30%=60(袋)。
∴a=60﹣5=55(袋),b=200﹣60﹣65﹣10﹣60=5(袋)。
(2)根據題意得先求出該超市乙種大米中B級大米所占的百分比,再乘以乙種大米的總袋數即可。
(3)分別求出超市的甲種大米A等級大米所占的百分比和丙種大米A等級大米所占的百分比,即可得出答案。
解:(1)55;5。
(2)根據題意得:750×=100,
答:該超市乙種大米中有100袋B級大米。
(3)∵超市的甲種大米A等級大米所占的百分比是×100%=91.7%,
丙種大米A等級大米所占的百分比是×100%=92.3%,
∴我會選擇購買丙種大米。
科目:初中數學 來源: 題型:
【題目】如圖,點E為△ABC的內心,過點E作MN∥BC交AB于點M,交AC于點N,若AB=7,AC=5,BC=6,則MN的長為( 。
A. 3.5B. 4C. 5D. 5.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“重整行裝再出發(fā),馳而不息再爭創(chuàng)”,2018年5月8日蘭州市召開了新一輪全國文明城市創(chuàng)建啟動大會.某校為了更好地貫徹落實創(chuàng)建全國文明城市目標,舉辦了“我是創(chuàng)城小主人”的知識競賽.該校七年級、八年級分別有300人,現從中各隨機抽取10名同學的測試成績進行調查分析,成績如下:
七年級 | 85 | 65 | 84 | 78 | 100 | 78 | 85 | 85 | 98 | 83 |
八年級 | 96 | 60 | 87 | 78 | 87 | 87 | 89 | 100 | 83 | 96 |
整理、描述數據:
分數段 | ||||
七年級人數 | 1 | 2 | 5 | 2 |
八年級人數 | 1 | 1 | 5 | 3 |
分析數據:
年級 | 平均數 | 中位數 | 眾數 |
七 | 84.1 | _______ | 85 |
八 | 86.3 | 87 | ______ |
得出結論:
(1)根據上述數據,將表格補充完整;
(2)估計該校七、八兩個年級學生在本次測試成績中可以取得優(yōu)秀的人數共有多少人?
(3)你認為哪個年級知識掌握的總體水平較好,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC是等邊三角形,AB=6,點D,E,F分別在邊AB,BC,AC上,BD:BE=2:3,DE同時平分∠BEF和∠BDF,則BD的長為___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.
(1)求從袋中隨機摸出一球,標號是1的概率;
(2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數時,則甲勝;若兩次摸出的球的標號之和為奇數時,則乙勝;試分析這個游戲是否公平?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了了解學校圖書館上個月借閱情況,管理老師從學生對藝術、經濟、科普及生活四類圖書借閱情況進行了統(tǒng)計,并繪制了下列不完整的統(tǒng)計圖,請根據圖中信息解答下列問題:
(1)上個月借閱圖書的學生有多少人?扇形統(tǒng)計圖中“藝術”部分的圓心角度數是多少?
(2)把條形統(tǒng)計圖補充完整;
(3)從借閱情況分析,如果要添置這四類圖書300冊,請你估算“科普”類圖書應添置多少冊合適?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,M是OA的中點,弦CD⊥AB于點M,過點D作DE⊥CA交CA的延長線于點E.
(1)連接AD,則∠OAD= °;
(2)求證:DE與⊙O相切;
(3)點F在上,∠CDF=45°,DF交AB于點N.若DE=3,求FN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,半徑OC⊥AB,OB=4,D是OB的中點,點E是弧BC上的動點,連接AE, DE.
(1)當點E是弧BC的中點時,求△ADE的面積;
(2)若tan∠AED=,求AE的長;
(3)點F是半徑OC上一動點,設點E到直線OC的距離為m,
①當△DEF是等腰直角三角形時,求m的值;
②延長DF交半圓弧于點G,若弧AG=弧EG,AG∥DE,直接寫出DE的長 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com