【題目】為了強(qiáng)化學(xué)生的環(huán)保意識,某校團(tuán)委在全校舉辦了“保護(hù)環(huán)境,人人有責(zé)”知識競賽活動,初、高中根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊進(jìn)行復(fù)賽,兩個隊學(xué)生的復(fù)賽成績(滿分10分)如圖所示:
(1)根據(jù)圖示填寫下表:
平均分 | 中位數(shù) | 眾數(shù) | 方差 | |
初中隊 | 8.5 | 0.7 | ||
高中隊 | 8.5 | 10 |
(2)小明同學(xué)說:“這次復(fù)賽我得了8分,在我們隊中排名屬中游偏下!”小明是初中隊還是高中隊的學(xué)生?為什么?
(3)結(jié)合兩隊成績的平均分、中位數(shù)和方差,分析哪個對的復(fù)賽成績較好.
【答案】(1)8.5,8.5,8,1.6;(2)小明在初中隊,理由見解析;(3)初中隊的成績好些,理由見解析
【解析】
(1)由條形圖得出初中隊和高中隊成績,再根據(jù)平均數(shù)、中位數(shù)、眾數(shù)及方差的概念求解可得;
(2)根據(jù)中位數(shù)的意義求解可得;
(3)從平均數(shù)、中位數(shù)及方差的意義求解可得.
(1):(1)由條形統(tǒng)計圖知,初中隊成績?nèi)缦拢?/span>7.5、8、8.5、8.5、10,高中隊的成績?yōu)椋?/span>7、7.5、8、10、10,
所以初中隊的平均分為,眾數(shù)為8.5;
高中隊的中位數(shù)為8,方差為×[(7-8.5)2+(7.5-8.5)2+(8-8.5)2+2×(10-8.5)2]=1.6;
補(bǔ)全表格如下:
平均分 | 中位數(shù) | 眾數(shù) | 方差 | |
初中隊 | 8.5 | 8.5 | 8.5 | 0.7 |
高中隊 | 8.5 | 8 | 10 | 1.6 |
(2)小明在初中隊.
理由:根據(jù)(1)可知,初中、高中隊的中位數(shù)分別為8.5分和8分,
∵8<8.5,
∴小明在初中隊.
(3)初中隊的成績好些.因為兩個隊的平均數(shù)相同,初中隊的中位數(shù)高,而且初中隊的方差小于高中隊的方差,所以在平均數(shù)相同的情況下中位數(shù)高、方差小的初中隊成績較好.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點M.請判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點M,若OD=1,OB=,請直接寫出當(dāng)點C與點M重合時AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,的角平分線交邊于.
(1)以邊上一點為圓心,過兩點作(不寫作法,保留作圖痕跡),再判斷直線與的位置關(guān)系,并說明理由;
(2)若(1)中的與邊的另一個交點為,,求線段與劣弧所圍成的圖形面積.(結(jié)果保留根號和)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為□ABCD的對稱中心,點A的坐標(biāo)為(-2,-2),AB=5,AB//x軸,反比例函數(shù)y=的圖象經(jīng)過點D,將□ABCD沿y軸向下平移,使點C的對應(yīng)點C′落在反比例函數(shù)的圖象上,則平移過程中線段AC掃過的面積為( )
A.10B.18C.20D.24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+mx(m<0)交x軸于O,A兩點,頂點為點B.
(1)求△AOB的面積(用含m的代數(shù)式表示);
(2)直線y=kx+b(k>0)過點B,且與拋物線交于另一點D(點D與點A不重合),交y軸于點C.過點C作CE∥AB交x軸于點E.
(。 若∠OBA=90°,2<<3,求k的取值范圍;
(ⅱ) 求證:DE∥y軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)給以下結(jié)論:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m為實數(shù));⑤4ac﹣b2<0.其中錯誤結(jié)論的個數(shù)有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過A(-1,0)B(4,0),C(0,4)三點.
(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)將(1)中的拋物線向下平移個長度單位,再向左平移h(h>0)個長度單位,得到新拋物線.若新拋物線的頂點在△ABC內(nèi),求h的取值范圍;
(3)點P為線段BC上的一動點(點P不與點B,C重合),過點P作x軸的垂線交(1)中的拋物線于點Q,當(dāng)△PQC與△ABC相似時,求△PQC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某藥店購進(jìn)一批消毒液,計劃每瓶標(biāo)價100元,由于疫情得到有效控制,藥店決定對這批消毒液全部降價銷售,設(shè)每次降價的百分率相同,經(jīng)過連續(xù)兩次降價后,每瓶售價為81元.
(1)求每次降價的百分率.
(2)若按標(biāo)價出售,每瓶能盈利100%,問第一次降價后銷售消毒液100瓶,第二次降價后至少需要銷售多少瓶,總利潤才能超過5000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,RtABC中,∠C=90°,AC=10,BC=16.動點P以每秒3個單位的速度從點A開始向點C移動,直線l從與AC重合的位置開始,以相同的速度沿CB方向平行移動,且分別與CB,AB邊交于E,F兩點,點P與直線l同時出發(fā),設(shè)運(yùn)動的時間為t秒,當(dāng)點P移動到與點C重合時,點P和直線l同時停止運(yùn)動.在移動過程中,將PEF繞點E逆時針旋轉(zhuǎn),使得點P的對應(yīng)點M落在直線l上,點F的對應(yīng)點記為點N,連接BN,當(dāng)BN∥PE時,t的值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com