【題目】為鼓勵大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件,出廠價為每件,每月銷售量(件)與銷售單價(元)之間的關(guān)系近似滿足一次函數(shù):

1)李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為,那么政府這個月為他承擔(dān)的總差價為多少元?

2)設(shè)李明獲得的利潤為(元),當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?

3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于,那么政府為他承擔(dān)的總差價最少為多少元?

【答案】1)政府這個月為他承擔(dān)的總差價為600;

2)當(dāng)銷售單價定為30元時,每月可獲得最大利潤4000;

3)銷售單價定為25元時,政府每個月為他承擔(dān)的總差價最少為500元.

【解析】

試題(1)把x=20代入y=﹣10x+500求出銷售的件數(shù),然后求出政府承擔(dān)的成本價與出廠價之間的差價;

2)由利潤=銷售價成本價,w=x﹣10)(﹣10x+500,把函數(shù)轉(zhuǎn)化成頂點坐標式,根據(jù)二次函數(shù)的性質(zhì)求出最大利潤;

3)令﹣10x2+600x﹣5000=3000,求出x的值,結(jié)合圖象求出利潤的范圍,然后設(shè)設(shè)政府每個月為他承擔(dān)的總差價為p,根據(jù)一次函數(shù)的性質(zhì)求出總差價的最小值.

試題解析:(1)當(dāng)x=20,y=﹣10x+500=﹣10×20+500=300,

300×12﹣10=300×2=600,

即政府這個月為他承擔(dān)的總差價為600;

2)依題意得,w=x﹣10)(﹣10x+500

=﹣10x2+600x﹣5000

=﹣10x﹣302+4000

∵a=﹣100,∴當(dāng)x=30,w有最大值4000元.

即當(dāng)銷售單價定為30元時,每月可獲得最大利潤4000;

3)由題意得:﹣10x2+600x﹣5000=3000,

解得:x1=20,x2=40

∵a=﹣100,拋物線開口向下,

結(jié)合圖象可知:當(dāng)20≤x≤40,w≥3000

∵x≤25,

當(dāng)20≤x≤25,w≥3000

設(shè)政府每個月為他承擔(dān)的總差價為p,

∴p=12﹣10×﹣10x+500

=﹣20x+1000

∵k=﹣200

∴px的增大而減小,

當(dāng)x=25,p有最小值500元.

即銷售單價定為25元時,政府每個月為他承擔(dān)的總差價最少為500元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,把沿軸對折,點落到點處,過點、的拋物線與直線交于點

1)求直線和拋物線的解析式;

2)在直線上方的拋物線上求一點,使面積最大,求出點坐標;

3)在第一象限內(nèi)的拋物線上,是否存在一點,作垂直于軸,垂足為點,使得以、為項點的三角形與相似?若存在,求出點的坐標:若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形ABCD的頂點A、C的坐標分別為(4,6)、(5,4),且AB平行于x軸,將矩形ABCD向左平移,得到矩形ABCD′.若點A′、C′同時落在函數(shù)的圖象上,則k的值為( 。

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的學(xué)習(xí)材料:

我們知道,一般情況下式子與“”是不相等的(m,n均為整數(shù)),但當(dāng)m,n取某些特定整數(shù)時,可以使這兩個式子相等,我們把使“=”成立的數(shù)對“mn”叫做“好數(shù)對”,記作[m,n],例如,當(dāng)mn0時,有=成立,則數(shù)對“0,0”就是一對“好數(shù)對”,記作[0,0]

解答下列問題:

1)通過計算,判斷數(shù)對“3,4”是否是“好數(shù)對”;

2)求“好數(shù)對”[x,﹣32]x的值;

3)請再寫出一對上述未出現(xiàn)的“好數(shù)對”[   ,   ];

4)對于“好數(shù)對[ab],如果a9kk為整數(shù)),則b   (用含k的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形ABCD折疊,使點ACD邊上的點H重合(H不與CD重合),折痕交AD于點E,交BC于點F,邊AB折疊后與邊BC交于點G.設(shè)正方形ABCD周長為m,△CHG周長為n,則為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物線的圖象交x軸于A20)和點B,交y軸負半軸于點C,且OB=OC,下列結(jié)論:

2bc=2;a=;ac=b1;0

其中正確的個數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD是菱形,點A的坐標為(0,),分別以AB為圓心,大于AB的長為半徑作弧,兩弧交于點E,F,直線EF恰好經(jīng)過點D,則點D的坐標為( 。

A. 2,2B. 2,C. ,2D. +1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,對角線AC,BD相交于點O,點E,F分別是OB,OD的中點.

1)試說明四邊形AECF是平行四邊形.

2)若AC8,AB6.若ACAB,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三輛汽車經(jīng)過某收費站下高速時,在2個收費通道A,B中,可隨機選擇其中的一個通過.

1)三輛汽車經(jīng)過此收費站時,都選擇A通道通過的概率是   ;

2)求三輛汽車經(jīng)過此收費站時,至少有兩輛汽車選擇B通道通過的概率.

查看答案和解析>>

同步練習(xí)冊答案