已知二次函數(shù)的圖象如圖.
(1)求它的對(duì)稱軸與軸交點(diǎn)D的坐標(biāo);
(2)將該拋物線沿它的對(duì)稱軸向上平移,設(shè)平移后的拋物線與軸,軸的交點(diǎn)分別為A、B、C三點(diǎn),若∠ACB=90°,求此時(shí)拋物線的解析式;
(3)設(shè)(2)中平移后的拋物線的頂點(diǎn)為M,以AB為直徑,D為圓心作⊙D,試判斷直線CM與⊙D的位置關(guān)系,并說明理由.
解: (1)由得
∴D(3,0)
(2)方法一:
如圖1, 設(shè)平移后的拋物線的解析式為
則C OC=
令 即
得
∴A,B
∴
∵
即:
得 (舍去)
∴拋物線的解析式為
方法二:
∵ ∴頂點(diǎn)坐標(biāo)
設(shè)拋物線向上平移h個(gè)單位,則得到,頂點(diǎn)坐標(biāo)
∴平移后的拋物線:
當(dāng)時(shí), , 得
∴ A B…
∵∠ACB=90° ∴△AOC∽△COB
∴OA·OB
得 ,
∴平移后的拋物線:
(3)方法一:
如圖2, 由拋物線的解析式可得
A(-2 ,0),B(8,0) ,C(4,0) ,M
過C、M作直線,連結(jié)CD,過M作MH垂直y軸于H,
則
∴
在Rt△COD中,CD==AD
∴點(diǎn)C在⊙D上
∵
∴
∴△CDM是直角三角形,∴CD⊥CM
∴直線CM與⊙D相切
方法二:
如圖3, 由拋物線的解析式可得
A(-2 ,0),B(8,0) ,C(4,0) ,M
作直線CM,過D作DE⊥CM于E, 過M作MH垂直y軸于H,則, , 由勾股定理得
∵DM∥OC
∴∠MCH=∠EMD
∴Rt△CMH∽Rt△DME
∴ 得
由(2)知 ∴⊙D的半徑為5
∴直線CM與⊙D相切
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、5個(gè) | B、4個(gè) | C、3個(gè) | D、2個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com