【題目】如圖,將邊長為2cm的兩個互相重合的正方形紙片按住其中一個不動,另一個繞點B順時針旋轉(zhuǎn)一個角度α(0°<α<90°),若兩正方形重疊部分的面積為,則這個旋轉(zhuǎn)角度為_____度.

【答案】30°

【解析】分析:設(shè)A′D′CD的交點為E,連接BE;由于A′B=BC,易證得ABE≌△CBE,因此兩者的面積相等,即可根據(jù)CBE的面積求得CE的值,從而通過解直角三角形求出∠CBE、CBA的度數(shù),進而可求得旋轉(zhuǎn)角的度數(shù).

詳解:設(shè)A′D′CD的交點為E,連接BE.

AB=BC,BE=BE,

RtABERtCBE.(HL)

∴∠ABE=EBC,且SBAE=SBCE=

RtBCE中,BC=2,則:

SBCE=×2×CE=,

CE=

tanEBC=,即∠EBC=30°

∴∠ABC=2EBC=60°ABA=90°-ABC=30°

故旋轉(zhuǎn)的角度為30°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:

①若a+b+c=0,則b2﹣4ac>0;

②若方程兩根為﹣12,則2a+c=0;

③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;

④若b=2a+c,則方程有兩個不相等的實根.其中正確的有( 。

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于點A1,6),B3,n)兩點.

1)求一次函數(shù)的表達式;

2)在y軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及PAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,是甲、乙兩個圓柱形水槽的軸截面示意圖,乙槽中有一四柱形鐵塊立放其中(圓柱形鐵塊的下底面完全落在乙槽底面上).現(xiàn)將甲槽的水勻速注入乙槽,甲、乙兩個水槽中水的深度y(厘米)與注水時間x(分鐘)之間的關(guān)系如圖2所示,根據(jù)圖象提供的信息,解答下列問題:

1)圖2中折線ABC表示 槽中水的深度與注水時間關(guān)系,線段DE表示 槽中水的深度與注水時間之間的關(guān)系(以上兩空選填“甲”或“乙”),點B的縱坐標表示的實際意義是 .

2)注水多長時間時,甲、乙.兩個水槽中水的深度相同?

3)若乙槽底面積為36平方厘米(壁厚不計),則乙槽中鐵塊的體積為 立方厘米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】任何一個正整數(shù)n都可以進行這樣的分解:ns×t(s,t是正整數(shù),且st),如果p×qn的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×qn的最佳分解,并規(guī)定:、例如18可以分解成1×18,2×9,3×6這三種,這時就有.給出下列關(guān)于F(n)的說法:(1);(2)(3)F(27)3;(4)n是一個整數(shù)的平方,則F(n)1.其中正確說法的有_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點E,且ABAE,延長ABDE的延長線交于點F.下列結(jié)論中:①△ABC≌△AED;②△ABE是等邊三角形;③ADAF;④SABESCDE;⑤SABESCEF.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知四邊形ABCD是正方形,對角線ACBD相交于點E,以點E為頂點作正方形EFGH

1)如圖1,點A、D分別在EHEF上,連接BH、AF,直接寫出BHAF的數(shù)量關(guān)系;

2)將正方形EFGH繞點E順時針方向旋轉(zhuǎn).

如圖2,判斷BHAF的數(shù)量關(guān)系,并說明理由;

如果四邊形ABDH是平行四邊形,請在備用圖中補全圖形;如果四方形ABCD的邊長為,求正方形EFGH的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從相距480kmAB兩地相向而行,乙車比甲車先出發(fā)1小時,并以各自的速度勻速行駛,途徑C地,甲車到達C地停留1小時,因有事按原路原速返回A地.乙車從B地直達A地,兩車同時到達A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時間x(小時)的關(guān)系如圖,結(jié)合圖象信息解答下列問題:

1)乙車的速度是   千米/時,t  小時;

2)求甲車距它出發(fā)地的路程y與它出發(fā)的時間x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)直接寫出乙車出發(fā)多長時間兩車相距120千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,對角線AC,BD相交于點O,點E的內(nèi)部,連接EB,EC,說明:

1;

2

3)若,,求的取值范圍.

查看答案和解析>>

同步練習冊答案