【題目】在東營(yíng)市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購(gòu)進(jìn)一批電腦和電子白板,經(jīng)過(guò)市場(chǎng)考察得知,購(gòu)買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬(wàn)元,購(gòu)買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬(wàn)元.
(1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬(wàn)元?
(2)根據(jù)學(xué)校實(shí)際,需購(gòu)進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過(guò)30萬(wàn)元,但不低于28萬(wàn)元,請(qǐng)你通過(guò)計(jì)算求出有幾種購(gòu)買方案,哪種方案費(fèi)用最低.
【答案】(1)每臺(tái)電腦0.5萬(wàn)元,每臺(tái)電子白板1.5萬(wàn)元;(2)方案3最省錢,即購(gòu)買電腦17臺(tái),電子白板13臺(tái)最省
【解析】
試題分析:(1)先設(shè)每臺(tái)電腦x萬(wàn)元,每臺(tái)電子白板y萬(wàn)元,根據(jù)購(gòu)買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬(wàn)元,購(gòu)買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬(wàn)元列出方程組,求出x,y的值即可;
(2)先設(shè)需購(gòu)進(jìn)電腦a臺(tái),則購(gòu)進(jìn)電子白板(30﹣a)臺(tái),根據(jù)需購(gòu)進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過(guò)30萬(wàn)元,但不低于28萬(wàn)元列出不等式組,求出a的取值范圍,再根據(jù)a只能取整數(shù),得出購(gòu)買方案,再根據(jù)每臺(tái)電腦的價(jià)格和每臺(tái)電子白板的價(jià)格,算出總費(fèi)用,再進(jìn)行比較,即可得出最省錢的方案.
解:(1)設(shè)每臺(tái)電腦x萬(wàn)元,每臺(tái)電子白板y萬(wàn)元,根據(jù)題意得:
,
解得:,
答:每臺(tái)電腦0.5萬(wàn)元,每臺(tái)電子白板1.5萬(wàn)元;
(2)設(shè)需購(gòu)進(jìn)電腦a臺(tái),則購(gòu)進(jìn)電子白板(30﹣a)臺(tái),根據(jù)題意得:
,
解得:15≤a≤17,
∵a只能取整數(shù),
∴a=15,16,17,
∴有三種購(gòu)買方案,
方案1:需購(gòu)進(jìn)電腦15臺(tái),則購(gòu)進(jìn)電子白板15臺(tái),
方案2:需購(gòu)進(jìn)電腦16臺(tái),則購(gòu)進(jìn)電子白板14臺(tái),
方案3:需購(gòu)進(jìn)電腦17臺(tái),則購(gòu)進(jìn)電子白板13臺(tái),
方案1:15×0.5+1.5×15=30(萬(wàn)元),
方案2:16×0.5+1.5×14=29(萬(wàn)元),
方案3:17×0.5+1.5×13=28(萬(wàn)元),
∵28<29<30,
∴選擇方案3最省錢,即購(gòu)買電腦17臺(tái),電子白板13臺(tái)最省錢.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)正八邊形的邊長(zhǎng)是2 cm,則這個(gè)正八邊形的周長(zhǎng)是______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一條長(zhǎng)40cm的繩子圍成一個(gè)面積為64cm2的矩形.設(shè)矩形的一邊長(zhǎng)為xcm,則可列方程為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列長(zhǎng)度的三條線段,能組成三角形的是( )
A. 3,4,8B. 6,7,8C. 5,6,11D. 1,4,7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)E、F分別在直線AB,CD上,點(diǎn)P在AB、CD之間,連結(jié)EP、FP,如圖1,過(guò)FP上的點(diǎn)G作GH∥EP,交CD于點(diǎn)H,且∠1=∠2.
(1)求證:AB∥CD;
(2)如圖2,將射線FC沿FP折疊,交PE于點(diǎn)J,若JK平分∠EJF,且JK∥AB,則∠BEP與∠EPF之間有何數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,將射線FC沿FP折疊,將射線EA沿EP折疊,折疊后的兩射線交于點(diǎn)M,當(dāng)EM⊥FM時(shí),求∠EPF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(-1,2),作點(diǎn)A關(guān)于y軸對(duì)稱得到點(diǎn)A′,再將點(diǎn)A′向上平移2個(gè)單位,得到點(diǎn)A′′,則點(diǎn)A′′的坐標(biāo)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若(x﹣2)(x+3)=x2+ax+b,則a,b的值分別為( )
A.a=5,b=﹣6
B.a=5,b=6
C.a=1,b=6
D.a=1,b=﹣6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com