【題目】已知四邊形ABCD和四邊形CEFG都是正方形,且AB>CE
(1) 如圖1,連接BG、DE,求證:BG=DE
(2) 如圖2,如果正方形CEFG繞點C旋轉到某一位置恰好使得CG∥BD,BG=BD
① 求∠BDE的度數(shù)
② 若正方形ABCD的邊長是,請直接寫出正方形CEFG的邊長____________
【答案】(1)見解析;(2)①∠BDE=60°;②1.
【解析】
(1)根據正方形的性質可以得出BC=DC,CG=CE,∠BCD=∠GCE=90°,再證明△BCG≌△DCE就可以得出結論;
(2)①根據平行線的性質可以得出∠DCG=∠BDC=45°,可以得出∠BCG=∠BCE,可以得出△BCG≌△BCE,得出BG=BE得出△BDE為正三角形就可以得出結論;
②延長EC交BD于點H,通過證明△BCE≌△BCG就可以得出∠BEC=∠DEC,就可以得出EH⊥BD,BH=BD,由勾股定理就可以求出EH的值,從而求出結論.
(1)證明:∵四邊形ABCD和CEFG為正方形,
∴BC=DC,CG=CE,∠BCD=∠GCE=90°.
∴∠BCD+∠DCG=∠GCE+∠DCG,
∴∠BCG=∠DCE.
在△BCG和△DCE中,
,
∴△BCG≌△DCE(SAS).
∴BG=DE;
(2)①連接BE.
由(1)可知:BG=DE.
∵CG∥BD,
∴∠DCG=∠BDC=45°.
∴∠BCG=∠BCD+∠GCD=90°+45°=135°.
∵∠GCE=90°,
∴∠BCE=360°∠BCG∠GCE=360°135°90°=135°.
∴∠BCG=∠BCE.
∵BC=BC,CG=CE,
在△BCG和△BCE中,
,
∴△BCG≌△BCE(SAS).
∴BG=BE.
∵BG=BD=DE,
∴BD=BE=DE.
∴△BDE為等邊三角形。
∴∠BDE=60°.
②延長EC交BD于點H,
在△BCE和△DCE中,
,
∴△BCE≌△BCG(SSS),
∴∠BEC=∠DEC,
∴EH⊥BD,BH=BD.
∵BC=CD=,在Rt△BCD中由勾股定理,得
∴BD=2.
∴BH=1.
∴CH=1.
在Rt△BHE中,由勾股定理,得
EH=,
∴CE=1.
∴正方形CEFG的邊長為1.
科目:初中數(shù)學 來源: 題型:
【題目】已知:⊙O為△ABC的外接圓,AB=AC,E是AB的中點,連OE,OE=,BC=8,則⊙O的半徑為( 。
A. 3 B. C. D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在線段AB上找一點C,C把AB分為AC和CB兩段,其中BC是較小的一段,如果BCAB=AC2,那么稱線段AB被點C黃金分割.為了增加美感,黃金分割經常被應用在繪畫、雕塑、音樂、建筑等藝術領域.如圖2,在“附中博識課程中”,小白菜們沿著紫禁城的中軸線,從內金水橋走到了太和殿,領略了古代建筑的宏偉.太和門位于太和殿與內金水橋之間靠近內金水橋的一側,三個建筑的位置關系滿足黃金分割.已知太和殿到內金水橋的距離約為100丈,設太和門到太和殿之間的距離為x丈,要求x,則可列方程為________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)沿相同的路線勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時間t(小時)之間的函數(shù)關系如圖所示,則下列結論:①A、B兩城相距300千米;②乙車比甲車晚出發(fā)1小時,卻早到1小時;③乙車出發(fā)后2.5小時追上甲車;④當甲、乙兩車相距50千米時,t=或.其中正確的是________(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰直角的斜邊在x軸上且長為4,點C在x軸上方.矩形中,點D、F分別落在x、y軸上,邊長為2,長為4,將等腰直角沿x軸向右平移得等腰直角.
(1)當點與點D重合時,求直線的解析式;
(2)連接,.當線段和線段之和最短時,求矩形和等腰直角重疊部分的面積;
(3)當矩形和等腰直角重疊部分的面積為時,求直線與y軸交點的坐標.(本問直接寫出答案即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小帶和小路兩個人開車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數(shù)關系如圖所示.有下列結論;①A,B兩城相距300 km;②小路的車比小帶的車晚出發(fā)1 h,卻早到1 h;③小路的車出發(fā)后2.5 h追上小帶的車;④當小帶和小路的車相距50 km時,t=或t=.其中正確的結論有( )
A. ①②③④B. ①②④
C. ①②D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,點D為BC上一點(不與點B、點C重合),連結AD,以AD為邊在右側作△ADE,DE交AC于點F,其中AD=AE,∠ADE=∠B.
(1)求證:△ABD∽△AEF;
(2)若=,記△ABD的面積為S1,△AEF的面積為S2,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,足球場上守門員徐楊在O處拋出一高球,球從離地面1m處的點A飛出,其飛行的最大高度是4m,最高處距離飛出點的水平距離是6m,且飛行的路線是拋物線一部分.以點O為坐標原點,豎直向上的方向為y軸的正方向,球飛行的水平方向為x軸的正方向建立坐標系,并把球看成一個點.(參考數(shù)據:4≈7)
(1)求足球的飛行高度y(m)與飛行水平距離x(m)之間的函數(shù)關系式;
(2)在沒有隊員干擾的情況下,球飛行的最遠水平距離是多少?(精確到個位)
(3)若對方一名1.7m的隊員在距落點C 3m的點H處,躍起0.3m進行攔截,則這名隊員能攔到球嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點C,點B在拋物線上,且與點C關于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經過該二次函數(shù)圖象上的點A(﹣1,0)及點B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com