精英家教網 > 初中數學 > 題目詳情

要把三個邊長為1cm的正方形紙片放在一個圓形盤子內,要求這三個正方形紙片不能某部分在盤子邊以外,且不能重疊.則盤子的半徑至少是________cm.


分析:首先根據題意求得符合要求的盤子的半徑,注意當呈現品字形是半徑最小,分別求其半徑,即可求得答案.
解答:解:如圖:
根據題意,可設計如圖所示的放置方式,
則圖①中盤子的半徑為:×=(cm);
圖②中盤子的半徑為:=(cm);
圖③中盤子的半徑為:=(cm);
如圖④,
∵OC⊥AB,
∴AC=BC=cm,
設OD=xcm,則OC=2-x(cm),
∴x2+1=(2-x)2+(2,
解得:x=,
∴OD=,
∴此時盤子的半徑為:=(cm).

∴盤子的半徑至少是cm.
故答案為:
點評:此題考查了正多邊形和圓、勾股定理、垂徑定理等知識.此題難度較大,解題的關鍵是根據題意找到盤子的半徑最小時的設計方案.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

25、一位畫家有若干個邊長為1cm的正方體,他在地面上把它們擺成如圖(三層)的形式,然后,他把露出的表面都涂上顏色.
(1)圖中的正方體一共有多少個?
(2)一點顏色都沒涂上顏色的正方體有多少個?
(3)如果畫家擺按此方式擺成七層,那又要多少個正方體?同樣涂上顏色,又有多少個正方體沒有涂上一點顏色?

查看答案和解析>>

科目:初中數學 來源: 題型:

要把三個邊長為1cm的正方形紙片放在一個圓形盤子內,要求這三個正方形紙片不能某部分在盤子邊以外,且不能重疊.則盤子的半徑至少是
5
17
16
5
17
16
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

一位畫家有若干個邊長為1cm的正方體,他在地面上把它們擺成如圖(三層)的形式,然后,他把露出的表面都涂上顏色.
(1)圖中的正方體一共有多少個?
(2)一點顏色都沒涂上顏色的正方體有多少個?
(3)如果畫家擺按此方式擺成七層,那又要多少個正方體?同樣涂上顏色,又有多少個正方體沒有涂上一點顏色?

查看答案和解析>>

科目:初中數學 來源:2012年河南省實驗中學中考模擬一模試卷(解析版) 題型:填空題

要把三個邊長為1cm的正方形紙片放在一個圓形盤子內,要求這三個正方形紙片不能某部分在盤子邊以外,且不能重疊.則盤子的半徑至少是    cm.

查看答案和解析>>

同步練習冊答案