15.點A(x1,y1)、B(x2,y2)在二次函數(shù)y=x2-4x-1的圖象上,若當(dāng)1<x1<2,3<x2<4時,則y1與y2的大小關(guān)系是y1<y2.(用“>”、“<”、“=”填空)

分析 先根據(jù)二次函數(shù)的解析式判斷出拋物線的開口方向及對稱軸,根據(jù)圖象上的點的橫坐標(biāo)距離對稱軸的遠(yuǎn)近來判斷縱坐標(biāo)的大。

解答 解:由二次函數(shù)y=x2-4x-1=(x-2)2-5可知,其圖象開口向上,且對稱軸為x=2,
∵1<x1<2,3<x2<4,
∴A點橫坐標(biāo)離對稱軸的距離小于B點橫坐標(biāo)離對稱軸的距離,
∴y1<y2
故答案為:<.

點評 本題主要考查對二次函數(shù)圖象上點的坐標(biāo)特征,二次函數(shù)的性質(zhì)等知識點的理解和掌握,能求出對稱軸和根據(jù)二次函數(shù)的性質(zhì)求出正確答案是解此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.先化簡,再求值:(x+1-$\frac{15}{x-1}$)÷$\frac{x-4}{x-1}$,其中x=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.計算:
(1)($\frac{x-1}{x}$-$\frac{1}{x}$)÷$\frac{x-2}{{x}^{2}-x}$
(2)|-3|+(-1)2011×(π-3)0-($\frac{1}{3}$)-1+($\frac{1}{2}$)-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點是網(wǎng)格線的交點).
(1)請畫一個格點△A1B1C1,使△A1B1C1∽△ABC,且相似比不為1;
(2)以C為位似中心,將△ABC縮小為原來的$\frac{1}{2}$,請畫出圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.已知:AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求證:BC=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.平方得4的數(shù)是±2;立方得-8的數(shù)是-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.用簡便方法計算:(-$\frac{4}{9}$-$\frac{5}{12}$+$\frac{1}{6}$)÷(-$\frac{1}{36}$).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.計算:tan60°-cos30°×tan45°+sin30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.在如圖所示的直角坐標(biāo)系中,若△ABC是等腰直角三角形,AB=AC=8$\sqrt{2}$,D為斜邊BC的中點.點P由點A出發(fā)沿線段AB做勻速運動,P′是P關(guān)于AD的對稱點;點Q由點D出發(fā)沿射線DC方向做勻速運動,且滿足四邊形QDPP′是平行四邊形.設(shè)平行四邊形QDPP′的面積為S,DQ=m.
(1)請直接寫出點A﹑B兩點的坐標(biāo);
(2)求S關(guān)于m的函數(shù)關(guān)系式;
(3)當(dāng)S取最大值時,求過點P,A,P′的二次函數(shù)關(guān)系式;
(4)在(3)中所求的二次函數(shù)圖象上是否存在一點E,使△EPP′的面積為20?若存在,請求出E點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案