【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸的正半軸上,反比例函數(shù)y= 在第一象限的圖象分別交矩形OABC的邊AB、BC邊點(diǎn)于E、F,已知BE=2AE,四邊形的OEBF的面積等于12.

(1)求k的值;

(2)若射線(xiàn)OE對(duì)應(yīng)的函數(shù)關(guān)系式是y=,求線(xiàn)段EF的長(zhǎng);

(3)在(2)的條件下,連結(jié)AC,試證明:EF∥AC.

【答案】(1)k的值為6;(2)EF;(3)詳見(jiàn)解析

【解析】

(1)由OAE面積與k的關(guān)系可求得k;

(2)由于點(diǎn)E為兩函數(shù)的交點(diǎn),聯(lián)立方程可求得點(diǎn)E的坐標(biāo),進(jìn)而求出點(diǎn)B、F的坐標(biāo),由勾股定理即可求出EF的長(zhǎng);

(3)易證BEF∽△BAC,從而得到∠BEF=BAC,進(jìn)而得到兩直線(xiàn)平行.

(1)連接OB,如圖1所示,

SOAB=SOCB,SOCF=SOAE=,

SOFB=SOBE,

SOFB+SOBE=12,

SOBE=6,

BE=2AE,

SOBE=2SOAE=6,

SOAE==3,

k=6,

k的值為6;

(2)解方程,得x=±6,

∵點(diǎn)E在第一象限,

x=6,

x=6代入

y=1,即點(diǎn)E(6,1).

BE=2AE,

∴點(diǎn)B(6,3),

y=3代入,得x=2.

∴點(diǎn)F(2,3),

BF=6﹣2=4,BE=3﹣1=2,

在直角BEF中,根據(jù)勾股定理得:

(3)連接AC,如圖2所示

BF=4,BE=2,BC=6,BA=3,

,,

,

∵∠B=B,

∴△BEF∽△BAC,

∴∠BEF=BAC.

EFAC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲、乙、丙三個(gè)廠(chǎng)家生產(chǎn)的同一種產(chǎn)品中,各抽出件產(chǎn)品,對(duì)其使用壽命進(jìn)行跟蹤調(diào)查,結(jié)果如下(單位:年)

甲:,,,,,

乙:,,,,,

丙:,,,,,,

三家廣告中都稱(chēng)該種產(chǎn)品的使用壽命是年,請(qǐng)根據(jù)調(diào)查結(jié)果判斷三個(gè)廠(chǎng)家在廣告中分別運(yùn)用了平均數(shù),眾數(shù)和中位數(shù)的哪一種數(shù)據(jù)作代表.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y1=k1x+b的圖象與x軸、y軸分別交于A、B兩點(diǎn),與反比例函數(shù)的圖象分別交于C、D兩點(diǎn),點(diǎn)D(2,﹣3),點(diǎn)B是線(xiàn)段AD的中點(diǎn).

(1)求一次函數(shù)y1=k1x+b與反比例函數(shù)的解析式;

(2)求COD的面積;

(3)直接寫(xiě)出y1y2時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面的說(shuō)理過(guò)程:如圖,在四邊形中,,分別是,延長(zhǎng)線(xiàn)上的點(diǎn),連接,分別交,于點(diǎn),.已知,.對(duì)說(shuō)明理由.

理由:(已知),

(______),

(等量代換).

(______).

(______).

(______),

(______).

(______).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,∠C90°,∠B30°ADABC的角平分線(xiàn).

1)求證:BD2CD

2)若CD2,求ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校的大學(xué)生自愿者參與服務(wù)工作,計(jì)劃組織全校自愿者統(tǒng)一乘車(chē)去某地.若單獨(dú)調(diào)配座客車(chē)若干輛,則空出個(gè)座位,若只調(diào)配座客車(chē)若干輛,則用車(chē)數(shù)量將增加,并有人沒(méi)有座位.

(1)計(jì)劃調(diào)配座客車(chē)多少輛?該大學(xué)共有多少名自愿者?(列方程組解答)

(2)若同時(shí)調(diào)配座和座兩種車(chē)型,既保證每人有座,又保證每車(chē)不空座,則兩種車(chē)型各需多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解本校學(xué)生每周參加課外輔導(dǎo)班的情況,隨機(jī)調(diào)査了部分學(xué)生一周內(nèi)參加課外輔導(dǎo)班的學(xué)科數(shù),并將調(diào)查結(jié)果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計(jì)圖(其中A0個(gè)學(xué)科,B1個(gè)學(xué)科,C2個(gè)學(xué)科,D3個(gè)學(xué)科,E4個(gè)學(xué)科或以上),請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:

1)請(qǐng)將圖2的統(tǒng)計(jì)圖補(bǔ)充完整;

2)根據(jù)本次調(diào)查的數(shù)據(jù),每周參加課外輔導(dǎo)班的學(xué)科數(shù)的眾數(shù)是   個(gè)學(xué)科;

3)若該校共有2000名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計(jì)該校全體學(xué)生一周內(nèi)參加課外輔導(dǎo)班在3個(gè)學(xué)科(含3個(gè)學(xué)科)以上的學(xué)生共有   人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在坐標(biāo)軸上,的中點(diǎn),四邊形是矩形,四邊形是正方形,若點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知四邊形ABCD為菱形,且03)、40).

1)求經(jīng)過(guò)點(diǎn)的反比例函數(shù)的解析式;

2)設(shè)是(1)中所求函數(shù)圖象上一點(diǎn),以頂點(diǎn)的三角形的面積與COD的面積相等.求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案