已知:在矩形ABCD中,E為邊BC上的一點(diǎn),AE⊥DE,AB=12,BE=16,F(xiàn)為線段BE上一點(diǎn),EF=7,連接AF。如圖1,現(xiàn)有一張硬紙片△GMN,∠NGM=900,NG=6,MG=8,斜邊MN與邊BC在同一直線上,點(diǎn)N與點(diǎn)E重合,點(diǎn)G在線段DE上。如圖2,△GMN從圖1的位置出發(fā),以每秒1個(gè)單位的速度沿EB向點(diǎn)B勻速移動(dòng),同時(shí),點(diǎn)P從A點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿AD向點(diǎn)D勻速移動(dòng),點(diǎn)Q為直線GN與線段AE的交點(diǎn),連接PQ。當(dāng)點(diǎn)N到達(dá)終點(diǎn)B時(shí),△GMNP和點(diǎn)同時(shí)停止運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為t秒,解答問題:

(1)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)點(diǎn)G在線段AE上時(shí),求t的值;
(2)在整個(gè)運(yùn)動(dòng)過程中,是否存在點(diǎn)P,使△APQ是等腰三角形,若存在,求出t的值;若不存在,說明理由;
(3)在整個(gè)運(yùn)動(dòng)過程中,設(shè)△GMN與△AEF重疊部分的面積為S,請(qǐng)直接寫出S與t的函數(shù)關(guān)系式以及自變量t的取值范圍。
解:(1)∵∠NGM=900,NG=6,MG=8,,
∴由勾股定理,得NM=10。
當(dāng)點(diǎn)G在線段AE上時(shí),如圖,

此時(shí),GG′=MN=10。
∵△GMN從圖1的位置出發(fā),以每秒1個(gè)單位的速度沿EB向點(diǎn)B勻速移動(dòng),
∴t=10秒。
(2)存在。
由矩形ABCD中,AB=12,BE=16,得AE=20。
①當(dāng)0<t≤10時(shí),線段GN與線段AE相交,如圖,過點(diǎn)Q作QH⊥BC于點(diǎn)H,QI⊥AB于點(diǎn)I,過點(diǎn)P作PJ⊥IJ于點(diǎn)J。

根據(jù)題意,知AP=EN=t,
由△QNE∽△GNM得,即,∴。
由△QHE∽△NGM得,即,

。
若AP=AQ,則,解得,不存在;
若AP=PQ,則,△<0,無解,不存在;
若AQ=PQ,則,無正數(shù)解,不存在。
②當(dāng)10<t≤16時(shí),線段GN的延長(zhǎng)線與線段AE相交,如圖,過點(diǎn)Q作QH⊥BC于點(diǎn)H,QI⊥AB于點(diǎn)I,過點(diǎn)P作PJ⊥IJ于點(diǎn)J。

同上,AP=EN=t,
由△QNE∽△GNM得,即,∴。
由△QHE∽△NGM得,即,
。
。
若AP=AQ,則,解得
若AP=PQ,則,△<0,無解,不存在;
若AQ=PQ,則,無正數(shù)解,不存在。
綜上所述,存在,使△APQ是等腰三角形。
(3)S與t的函數(shù)關(guān)系式為
(1)由勾股定理,求出MN的長(zhǎng),點(diǎn)Q運(yùn)動(dòng)到AE上時(shí)的距離MN的長(zhǎng),離從而除以速度即得t的值。
(2)分0<t≤10和10<t≤16兩種情況討論,每種情況分AP=AQ,AP=PQ,AQ=PQ三種情況討論。
(3)當(dāng)0<t≤7時(shí),△GMN與△AEF重疊部分的面積等于△QNE的面積,
由(2)①,EN=t,,∴。
當(dāng)7<t≤10時(shí),如圖,△GMN與△AEF重疊部分的面積等于四邊形QIFE的面積,它等于△NQE的面積減去△NIF的面積。

由(2)①,EN=t,,∴。
過點(diǎn)I 作IJ⊥BC于點(diǎn)J,
∵EF=7,EN=t,∴。
由△FJI∽△FBA得,即。
由△INJ∽△MNG得,即
二式相加,得!
。
當(dāng)10<t≤時(shí),如圖,△GMN與△AEF重疊部分的面積等于四邊形GIFM的面積,它等于△GMN的面積減去△INF的面積。
過點(diǎn)I 作IH⊥BC于點(diǎn)H,

∵EF=7,EN=t,∴
由△FHG∽△FBA得,即
由△INH∽△MNG得,即。
二式相加,得!。
。
當(dāng)<t≤16時(shí),如圖,△GMN與△AEF重疊部分的面積等于△IFM的面積。

,
(同上可得),
。
綜上所述,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

課本中把長(zhǎng)與寬之比為的矩形紙片稱為標(biāo)準(zhǔn)紙.請(qǐng)解決下列問題:
(1)將一張標(biāo)準(zhǔn)紙ABCD(AB<BC)對(duì)開,如圖1所示,所得的矩形紙片ABEF是標(biāo)準(zhǔn)紙.請(qǐng)給予證明;

(2)在一次綜合實(shí)踐課上,小明嘗試著將矩形紙片ABCD(AB<BC)進(jìn)行如下操作:
第一步:沿過A點(diǎn)的直線折疊,使B點(diǎn)落在AD邊上點(diǎn)F處,折痕為AE(如圖2甲);
第二步:沿過D點(diǎn)的直線折疊,使C點(diǎn)落在AD邊上點(diǎn)N處,折痕為DG(如圖2乙) .此時(shí)E點(diǎn)恰好落在AE邊上的點(diǎn)M處;
第三步:沿直線DM折疊(如圖2丙),此時(shí)點(diǎn)G恰好與N點(diǎn)重合.

請(qǐng)你研究,矩形紙片ABCD是否是一張標(biāo)準(zhǔn)紙?請(qǐng)說明理由.
(3)不難發(fā)現(xiàn),將一張標(biāo)準(zhǔn)紙如圖3一次又一次對(duì)開后,所得的矩形紙片都是標(biāo)準(zhǔn)紙.現(xiàn)有一張標(biāo)準(zhǔn)紙ABCD,AB=1,BC=,問第5次對(duì)開后所得標(biāo)準(zhǔn)紙的周長(zhǎng)是多少?探索并直接寫出第2002次對(duì)開后所得標(biāo)準(zhǔn)紙的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下列材料:
如圖1,在梯形ABCD中,AD∥BC,點(diǎn)M、N分別在邊AB、BC上,且MN∥AD,記AD=a,BC=b,若,則有結(jié)論:。

請(qǐng)根據(jù)以上結(jié)論,解答下列問題:

如圖2,3,BE、CF是△ABC的兩條角平分線,過EF上一點(diǎn)P分別作△ABC三邊的垂線段PP1、PP2、PP3,交BC于點(diǎn)P1,交AB于點(diǎn)P2,交AC于點(diǎn)P3。
(1)若點(diǎn)P為線段EF的中點(diǎn),求證:PP1=PP2+PP3;
(2)若點(diǎn)P在線段EF上任意位置時(shí),試探究PP1、PP2、PP3的數(shù)量關(guān)系,給出證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,等腰梯形ABCD中,AD∥BC,DE⊥BC,BD⊥DC,垂足分別為E,D,DE=3,BD=5,則腰長(zhǎng)AB=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在菱形ABCD中,∠BAD=2∠B,E,F(xiàn)分別為BC,CD的中點(diǎn),連接AE、AC、AF,則圖中與△ABE全等的三角形(△ABE除外)有

A.1個(gè)         B.2個(gè)        C.3個(gè)        D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一個(gè)含有30°角的直角三角形的兩個(gè)頂點(diǎn)放在一個(gè)矩形的對(duì)邊上,若∠1=250,則∠2=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在邊長(zhǎng)為3的正方形ABCD中,點(diǎn)E是BC邊上的點(diǎn),BE=1,∠AEP=90°,且EP交正方形外角的平分線CP于點(diǎn)P,交邊CD于點(diǎn)F,

(1)的值為   
(2)求證:AE=EP;
(3)在AB邊上是否存在點(diǎn)M,使得四邊形DMEP是平行四邊形?若存在,請(qǐng)給予證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,點(diǎn)D在BC上,以AC為對(duì)角線的所有ADCE中,DE最小的值是
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,把矩形ABCD沿直線EF折疊,若∠1=20°,則∠2=
A.80°B.70°C.40°D.20°

查看答案和解析>>

同步練習(xí)冊(cè)答案