(2010•濱湖區(qū)一模)若△ABC的一邊a為4,另兩邊b、c分別滿足b2-5b+6=0,c2-5c+6=0,則△ABC的周長為( )
A.9
B.10
C.9或10
D.8或9或10
【答案】分析:由于兩邊b、c分別滿足b2-5b+6=0,c2-5c+6=0,那么b、c可以看作方程x2-5x+6=0的兩根,根據(jù)根與系數(shù)的關(guān)系可以得到b+c=5,bc=6,而△ABC的一邊a為4,由此即可求出△ABC的一邊a為4周長.
解答:解:∵兩邊b、c分別滿足b2-5b+6=0,c2-5c+6=0,
∴b、c可以看作方程x2-5x+6=0的兩根,
∴b+c=5,bc=6,
而△ABC的一邊a為4,
①若b=c,則b=c=3或b=c=2,但2+2=4,所以三角形不成立,故b=c=3.
∴△ABC的周長為4+3+3=10或4+2+2
②若b≠c,∴△ABC的周長為4+5=9.
故選C.
點評:此題把一元二次方程的根與系數(shù)的關(guān)系與三角形的周長結(jié)合起來,利用根與系數(shù)的關(guān)系來三角形的周長.此題要注意分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年江蘇省無錫市雪浪中學(xué)4月初三(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•濱湖區(qū)一模)如圖,拋物線y=x2+mx+n交x軸于A、B兩點,直線y=kx+b經(jīng)過點A,與這條拋物線的對稱軸交于點M(1,2),且點M與拋物線的頂點N關(guān)于x軸對稱.
(1)求這條拋物線的函數(shù)關(guān)系式;
(2)設(shè)題中的拋物線與直線的另一交點為C,已知P為線段AC上一點(不含端點),過點P作PQ⊥x軸,交拋物線于點Q,試證明:當P為AC的中點時,線段PQ的長取得最大值,并求出PQ的最大值;
(3)設(shè)D、E為直線AC上的兩點(不與A、C重合),且D在E的左側(cè),DE=2,過點D作DF⊥x軸交拋物線于點F,過點E作EG⊥x軸交拋物線于點G.問:是否存在這樣的點D,使得以D、E、F、G為頂點的四邊形為平行四邊形?若存在,請求出所有符合條件的點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省無錫市雪浪中學(xué)4月初三(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•濱湖區(qū)一模)閱讀材料:如圖①,在平面上,給定了半徑為r的⊙O,對于任意一點P,在射線OP上取一點Q,使得OP•OQ=r2,這種把點P變?yōu)辄cQ的變換叫做反演變換,點P與點Q叫做互為反演點.
解答問題:如圖②,⊙O內(nèi)、外各有一點A和B,它們的反演點分別為C和D,連接AB、CD,試判斷∠B、∠C之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省無錫市雪浪中學(xué)4月初三(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•濱湖區(qū)一模)如圖,已知矩形ABCD的對角線AC、BD相交于點O,過點A作AM⊥AC,過點D作DN⊥BD,AM、DN相交于點E,求證:AE=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省無錫市雪浪中學(xué)4月初三(下)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•濱湖區(qū)一模)下列各式,能用平方差公式計算的是( )
A.(x+2y)(2x-y)
B.(x+y)(x-2y)
C.(x+2y)(2y-x)
D.(x-2y)(2y-x)

查看答案和解析>>

同步練習(xí)冊答案