(1999•煙臺(tái))如圖,正方形ABCD中,E是BC上一點(diǎn),連接AE,過點(diǎn)E作AE的垂線分別交CD,AB的延長線于點(diǎn)F,G.
求證:BE=BG+FC.

【答案】分析:作輔助線,構(gòu)造全等三角形,將BG+FC轉(zhuǎn)化成一條線段,證明三角形的全等.
解答:證明:過點(diǎn)C作GF的平行線交AG的延長線于點(diǎn)H,(1分)
則得GHCF是平行四邊形.
∴∠H=∠AGE,GH=FC.(2分)
∵∠AGE+∠GAE=90°,
∠AEB+∠GAE=90°,
∴∠AEB=∠AGE=∠H.(3分)
∠ABE=∠CBH=90°,AB=BC,
∴△ABE≌△CBH.(4分)
∴BE=BH=BG+GH=BG+FC.(5分)
點(diǎn)評(píng):本題重點(diǎn)考查了三角形全等的判定定理,普通兩個(gè)三角形全等共有四個(gè)定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,無法證明三角形全等,本題是一道較為簡單的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《三角形》(03)(解析版) 題型:解答題

(1999•煙臺(tái))如圖,四邊形AOBC是矩形,點(diǎn)A的坐標(biāo)是(0,3),點(diǎn)B的坐標(biāo)是(4,0),動(dòng)點(diǎn)P,Q同時(shí)從點(diǎn)O出發(fā),P沿折線OACB的方向運(yùn)動(dòng),Q沿折線OBCA的方向運(yùn)動(dòng).
(1)若P的運(yùn)動(dòng)速度是Q的3倍,點(diǎn)P運(yùn)動(dòng)到AC邊上,連接PQ交OC于點(diǎn)R,且OR=2,求直線PQ的函數(shù)關(guān)系式;
(2)若P的運(yùn)動(dòng)速度是每秒個(gè)單位長度,Q的運(yùn)動(dòng)速度是個(gè)單位長度,運(yùn)動(dòng)到相遇時(shí)停止,設(shè)△OPQ的面積為S,運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:解答題

(1999•煙臺(tái))如圖,已知拋物線y=ax2+bx+交x軸正半軸于A,B兩點(diǎn),交y軸于點(diǎn)C,且∠CBO=60°,∠CAO=45°,求拋物線的解析式和直線BC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(1999•煙臺(tái))如圖,已知拋物線y=ax2+bx+交x軸正半軸于A,B兩點(diǎn),交y軸于點(diǎn)C,且∠CBO=60°,∠CAO=45°,求拋物線的解析式和直線BC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年山東省煙臺(tái)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•煙臺(tái))如圖,四邊形AOBC是矩形,點(diǎn)A的坐標(biāo)是(0,3),點(diǎn)B的坐標(biāo)是(4,0),動(dòng)點(diǎn)P,Q同時(shí)從點(diǎn)O出發(fā),P沿折線OACB的方向運(yùn)動(dòng),Q沿折線OBCA的方向運(yùn)動(dòng).
(1)若P的運(yùn)動(dòng)速度是Q的3倍,點(diǎn)P運(yùn)動(dòng)到AC邊上,連接PQ交OC于點(diǎn)R,且OR=2,求直線PQ的函數(shù)關(guān)系式;
(2)若P的運(yùn)動(dòng)速度是每秒個(gè)單位長度,Q的運(yùn)動(dòng)速度是個(gè)單位長度,運(yùn)動(dòng)到相遇時(shí)停止,設(shè)△OPQ的面積為S,運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年山東省煙臺(tái)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•煙臺(tái))如圖,已知拋物線y=ax2+bx+交x軸正半軸于A,B兩點(diǎn),交y軸于點(diǎn)C,且∠CBO=60°,∠CAO=45°,求拋物線的解析式和直線BC的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案