設(shè)x1,x2,x3,x4,x5,x6,x7是自然數(shù),且x1<x2<x3<x4<x5<x6<x7,x1+x2=x3,x2+x3=x4,x3+x4=x5,x4+x5=x6,x5+x6=x7,又x1+x2+x3+x4+x5+x6+x7=2010,那么x1+x2+x3的值最大是
 
分析:不定方程的思想結(jié)合x(chóng)1+x2+x3+x4+x5+x6+x7=13x1+20x2=2010,可得x1必是10的奇數(shù)倍,然后根據(jù)x1<x2可得出答案.
解答:解:∵x1+x2+x3+x4+x5+x6+x7=13x1+20x2=2010,
利用整除性,x1必是10的奇數(shù)倍,又x1<x2,
可得
x1=10
x2=94
,
x1=30
x2=81
x1=50
x2=68
,(x1+x2+x3max=2(x1+x2max=2(50+68)=236.
故答案為:236.
點(diǎn)評(píng):本題考查數(shù)的整除性問(wèn)題,綜合了不定方程的思想,難度較大,關(guān)鍵是根據(jù)題意得出x1必是10的奇數(shù)倍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x1,x2,x3,…,x10的平均數(shù)為
.
x
,方差為s2,標(biāo)準(zhǔn)差為s,若s=0,則有( 。
A、
.
x
=0
B、s2=0且
.
x
=0
C、x1=x2=…=x10
D、x1=x2=…=x10=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、設(shè)x1,x2,x3,…,x9均為正整數(shù),且x1<x2<…<x9,x1+x2+…+x9=220,則當(dāng)x1+x2+x3+x4+x5的值最大時(shí),x9-x1的最小值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x1,x2,x3,x4,x5這五個(gè)數(shù)的平均數(shù)是a,則x1-1,x2-1,x3-1,x4-1,x5-1的平均數(shù)是(  )
A、a-1
B、a-5
C、
a-1
5
D、a+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、設(shè)x1、x2、x3、x4、x5均為正整數(shù),且x1+x2+x3+x4+x5≤x1x2x3x4x5.試求x5的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x1,x2,x3,…,x2007為實(shí)數(shù),且滿足x1x2x3…x2007=x1-x2x3…x2007=x1x2-x3…x2007=…=x1x2x3…x2006-x2007=1,
則x2000的值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案