【題目】如圖1,矩形OABC的頂點(diǎn)A的坐標(biāo)為(4,0),O為坐標(biāo)原點(diǎn),點(diǎn)B在第一象限,連接AC tan∠ACO=2,DBC的中點(diǎn),

1)求點(diǎn)D的坐標(biāo);

2)如圖2,M是線段OC上的點(diǎn),OM=OC,點(diǎn)P是線段OM上的一個(gè)動(dòng)點(diǎn),經(jīng)過P、D、B三點(diǎn)的拋物線交 軸的正半軸于點(diǎn)E,連接DEAB于點(diǎn)F.

△DBF沿DE所在的直線翻折,若點(diǎn)B恰好落在AC上,求此時(shí)點(diǎn)P的坐標(biāo);

以線段DF為邊,在DF所在直線的右上方作等邊△DFG,當(dāng)動(dòng)點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)M時(shí),點(diǎn)G也隨之運(yùn)動(dòng),請直接寫出點(diǎn)G運(yùn)動(dòng)的路徑的長.

【答案】1D2,2);(2)①P0,0);②

【解析】

1)根據(jù)三角函數(shù)求出OC的長度,再根據(jù)中點(diǎn)的性質(zhì)求出CD的長度,即可求出D點(diǎn)的坐標(biāo);

2)①證明在該種情況下DE為△ABC的中位線,由此可得FAB的中點(diǎn),結(jié)合三角形全等即可求得E點(diǎn)坐標(biāo),結(jié)合二次函數(shù)的性質(zhì)可設(shè)二次函數(shù)表達(dá)式(此表達(dá)式為交點(diǎn)式的變形,利用了二次函數(shù)的平移的特點(diǎn)),將E點(diǎn)代入即可求得二次函數(shù)的表達(dá)式,根據(jù)表達(dá)式的特征可知P點(diǎn)坐標(biāo);

②可得G點(diǎn)的運(yùn)動(dòng)軌跡為,證明△DFF'≌△FGG',可得GG'FF',求得P點(diǎn)運(yùn)動(dòng)到M點(diǎn)時(shí)的解析式即可求出F'的坐標(biāo),結(jié)合①可求得FF'GG'的長度.

解:(1)∵四邊形OABC為矩形,

BC=OA=4,∠AOC=90°,

∵在RtACO中,tanACO==2,

OC=2,

又∵DCB中點(diǎn),

CD=2,

D2,2);

2)①如下圖所示,

若點(diǎn)B恰好落在AC上的時(shí),根據(jù)折疊的性質(zhì),

DBC的中點(diǎn),

CD=BD,

,

,

,

,DF為△ABC的中位線,

AF=BF,

∵四邊形ABCD為矩形

∴∠ABC=BAE=90°

在△BDF和△AEF中,

∴△BDF≌△AEF,

AE=BD=2,

E(6,0),

設(shè),將E6,0)帶入,8a+2=0

a=,則二次函數(shù)解析式為,此時(shí)P0,0);

②如圖,當(dāng)動(dòng)點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)M時(shí),點(diǎn)F運(yùn)動(dòng)到點(diǎn)F',點(diǎn)G也隨之運(yùn)動(dòng)到G'.連接GG'.當(dāng)點(diǎn)P向點(diǎn)M運(yùn)動(dòng)時(shí),拋物線開口變大,F點(diǎn)向上線性移動(dòng),所以G也是線性移動(dòng).

OM=OC=

,

當(dāng)P點(diǎn)運(yùn)動(dòng)到M點(diǎn)時(shí),設(shè)此時(shí)二次函數(shù)表達(dá)式為,將代入得,解得,所以拋物線解析式為,整理得.

當(dāng)y=0時(shí),,解得x=8(已舍去負(fù)值),

所以此時(shí),

設(shè)此時(shí)直線 的解析式為y=kx+b

D2,2),E8,0)代入解得

所以

當(dāng)x=4時(shí),,所以,

由①得

所以,

∵△DFG、△DF'G'為等邊三角形,

∴∠GDF=∠G'DF'60°,DGDFDG'DF',

∴∠GDF﹣∠GDF'=∠G'DF'﹣∠GDF'

即∠G'DG=∠F'DF,

在△DFF'與△FGG'中,

∴△DFF'≌△FGG'SAS),

GG'FF',

G運(yùn)動(dòng)路徑的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+ca≠0)如圖所示,下列結(jié)論:①b24ac0;②a+b+c2;③abc0;④ab+c0,其中正確的有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,,,;

(1)請說明的理由;

(2)可以經(jīng)過圖形的變換得到,請你描述這個(gè)變換;

(3)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點(diǎn),AE=ED,DF=DC,連結(jié)EF并延長交BC的延長線于點(diǎn)G,連結(jié)BE.

(1)求證:△ABE∽△DEF.

(2)若正方形的邊長為4,求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,EBC邊上一點(diǎn),連接DE,點(diǎn)F為線段DE上一點(diǎn),且AFEB.

1)求證ADF∽△DEC

2)若BE2,AD6,且DF=DE,求DF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是△ABC的外接圓,圓心OAB上,過點(diǎn)BO的切線交AC的延長線于點(diǎn)D

1)求證:△ABC∽△BDC

2)若AC=8,BC=6,求△BDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,ABC,CDE都是等邊三角形.

1)寫出AEBD的大小關(guān)系.

2)若把CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)到圖②的位置時(shí),上述(1)的結(jié)論仍成立嗎?請說明理由.

3ABC的邊長為5,CDE的邊長為2,把CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一周后回到圖①位置,求出線段AE長的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中所示的拋物線形拱橋,當(dāng)拱頂離水面4m時(shí),水面寬8m.水面上升3米,水面寬度減少多少?下面給出了解決這個(gè)問題的兩種建系方法.

方法一如圖1,以上升前的水面所在直線與拋物線左側(cè)交點(diǎn)為原點(diǎn),以上升前的水面所在直線為x軸,建立平面直角坐標(biāo)系xOy;

方法二如圖2,以拋物線頂點(diǎn)為原點(diǎn),以拋物線的對稱軸為y軸,建立平面直角坐標(biāo)系xOy,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子中裝有4張卡片,4張卡片的正面分別標(biāo)有數(shù)字1、2、3、4,這些卡片除數(shù)字外都相同,將卡片攪勻.

1)從盒子任意抽取一張卡片,恰好抽到標(biāo)有奇數(shù)卡片的概率是 ;

2)先從盒子中任意抽取一張卡片,再從余下的3張卡片中任意抽取一張卡片,求抽取的2張卡片標(biāo)有數(shù)字之和大于5的概率(請用畫樹狀圖或列表等方法求解).

查看答案和解析>>

同步練習(xí)冊答案