如圖,已知AD是△ABC的外接圓的直徑,AD=13cm,cosB=
5
13
,則AC的長(zhǎng)等于(  )
分析:先根據(jù)圓周角定理得出∠B=∠ADC,∠ACD=90°,再根據(jù)銳角三角函數(shù)的定義解答即可.
解答:解:∵∠B與∠ADC是同弧所對(duì)的圓周角,
∴∠B=∠ADC,
∴cosB=cos∠ADC=
5
13
,
∵AD是△ABC的外接圓的直徑,
∴∠ACD=90°,
∵在Rt△ACD中,AD=13cm,
∴cos∠ADC=
CD
AD
=
CD
13
=
5
13
,
∴CD=5,
∴AC=
AD2-CD2
=
132-52
=12cm.
故選D.
點(diǎn)評(píng):本題考查的是圓周角定理及銳角三角函數(shù)的定義,熟知在“同圓或等圓中同弧或等弧所對(duì)的圓周角相等”是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,已知AD是△ABC的角平分線,CE⊥AD,垂足O,CE交AB于E,則下列命題:①AE=AC,②CO=OE,③∠AEO=∠ACO,④∠B=∠ECB.其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,已知AD是△ABC的角平分線,在不添加任何輔助線的前提下,要使△AED≌△AFD,需添加一個(gè)條件是:
AE=AF或∠EDA=∠FDA
,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AD是等腰三角形ABC底邊上的高,AD與底邊BC的比是2:3,等腰三角形的面積是12cm,求等腰三角形ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD是△ABC的中線,∠ADC=45°,把△ABC沿AD對(duì)折,點(diǎn)C落在點(diǎn)E的位置,連接BE,若BC=6cm.
(1)求BE的長(zhǎng);
(2)當(dāng)AD=4cm時(shí),求四邊形BDAE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD是△ABC的角平分線,DE∥AB交AC于點(diǎn)E.那么△ADE是等腰三角形嗎?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案