【題目】(問(wèn)題背景)如圖1所示,在中,,,點(diǎn)D為直線上的個(gè)動(dòng)點(diǎn)(不與B、C重合),連結(jié),將線段繞點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)90°,使點(diǎn)A旋轉(zhuǎn)到點(diǎn)E,連結(jié).
(問(wèn)題初探)如果點(diǎn)D在線段上運(yùn)動(dòng),通過(guò)觀察、交流,小明形成了以下的解題思路:過(guò)點(diǎn)E作交直線于F,如圖2所示,通過(guò)證明______,可推證是_____三角形,從而求得______°.
(繼續(xù)探究)如果點(diǎn)D在線段的延長(zhǎng)線上運(yùn)動(dòng),如圖3所示,求出的度數(shù).
(拓展延伸)連接,當(dāng)點(diǎn)D在直線上運(yùn)動(dòng)時(shí),若,請(qǐng)直接寫(xiě)出的最小值.
圖1 圖2 圖3
【答案】(1)△ADB,等腰直角,135°;(2)45°;(3).
【解析】
(1)問(wèn)題初探:由旋轉(zhuǎn)的性質(zhì)得到∠ADE=90°,AD=DE,則∠ADB+∠EDF=∠ADB+∠DAB=90°,得到∠DAB=∠EDF,則根據(jù)AAS得到△DEF≌△ADB;則EF=BD,DF=AB,則AB=AC=DF,得到BD=CF=EF,則△CEF是等腰直角三角形;從而得到∠DCE=135°;
(2)繼續(xù)探究:過(guò)點(diǎn)E作EG⊥CD,與(1)同理,可證△ABD≌△DGE,得到BD=GE,AB=DG=BC,則BD=CG=GE,即可得到;
(3)拓展延伸:當(dāng)點(diǎn)D在直線BC上運(yùn)動(dòng)時(shí),當(dāng)BE⊥CE時(shí),BE的長(zhǎng)度是最小值,由(2)可知,則△BCE為等腰直角三角形,則.
解:(1)問(wèn)題初探:如圖,
由旋轉(zhuǎn)的性質(zhì),得:∠ADE=90°,AD=DE,
∴∠ADB+∠EDF=90°,
∵∠ABC=90°,
∴∠ADB+∠DAB=90°,
∴∠DAB=∠EDF,
∵EF⊥BC,
∴∠ABC=∠DFE=90°,
∴△ADB≌△DEF(AAS);
∴BD=EF,AB=DF,
∴AB=DF=BC,
∴BD+DC=DC+CF,
∴BD=CF=EF,
∴△CEF是等腰直角三角形;
∴∠CEF=45°,
∴∠DCE=∠CEF+∠CFE=45°+90°=135°;
故答案為:△ADB,等腰直角,135°;
(2)繼續(xù)探究:如圖,過(guò)點(diǎn)E作EG⊥CD,
∵∠ADE=∠ADB+∠GDE=90°,∠ADB+∠DAB=90°,
∴∠GDE=∠DAB,
∵∠ABD=∠DGE=90°,AD=DE,
∴△ABD≌△DGE(AAS),
∴BD=GE,AB=DG=BC,
∴BD+BG=BG+GC,
∴CG=BD=GE,
∴△CEG是等腰直角三角形,
∴∠DCE=45°;
(3)拓展延伸:如圖,當(dāng)點(diǎn)D在直線BC上運(yùn)動(dòng)時(shí),當(dāng)BE⊥CE時(shí),BE的長(zhǎng)度是最小值;
則∠BEC=90°.
由(2)可知,∠DCE=45°,
∴△BCE是等腰直角三角形,
∴BE=CE,
∵,
∴;
∴BE的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,中,,,點(diǎn)、分別在邊、上運(yùn)動(dòng),的形狀大小始終保持不變.在運(yùn)動(dòng)的過(guò)程中,點(diǎn)到點(diǎn)的最大距離為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下列4×4網(wǎng)格圖都是由16個(gè)相同小正方形組成,每個(gè)網(wǎng)格圖中有4個(gè)小正方形已涂上陰影,請(qǐng)?jiān)诳瞻仔≌叫沃,按下列要求涂上陰影?/span>
(1)在圖1中選取2個(gè)空白小正方形涂上陰影,使6個(gè)陰影小正方形組成一個(gè)中心對(duì)稱圖形;
(2)在圖2中選取2個(gè)空白小正方形涂上陰影,使6個(gè)陰影小正方形組成一個(gè)軸對(duì)稱圖形,但不是中心對(duì)稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過(guò)點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D為AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請(qǐng)說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】()如圖①,在四邊形中,,,、分別是邊、上的點(diǎn),且.
求證:.
()如圖②,在四邊形中,,,、分別是邊、上的點(diǎn),且,()中的結(jié)論是否仍然成立?
()如圖③,在四邊形中,,,、分別是邊、延長(zhǎng)線上的點(diǎn),且.()中的結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)寫(xiě)出它們之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,則下列結(jié)論:①AB+AD=2AE;②∠DAB+∠DCB=180°;③CD=CB;④S△ACE﹣2S△BCE=S△ADC;其中正確結(jié)論的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,已知,,點(diǎn)是邊延長(zhǎng)線上一點(diǎn),如圖所示,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接交直線于點(diǎn),若,則( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)的圖象,下列結(jié)論錯(cuò)誤的是( )
A.圖象經(jīng)過(guò)一、二、四象限
B.與軸的交點(diǎn)坐標(biāo)為
C.隨的增大而減小
D.圖象與兩坐標(biāo)軸相交所形成的直角三角形的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將兩塊全等的含30°角的三角尺按如圖1所示的方式擺放在一起,它們較短的直角邊BC=EC=3.
(1)將△ECD沿直線l向左平移到圖2的位置,使點(diǎn)E′落在AB上,則CC′= ;
(2)將△ECD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)到圖3的位置,使點(diǎn)E′落在AB上,則△ECD繞點(diǎn)C旋轉(zhuǎn)的度數(shù)為 ;
(3)將△ECD沿直線AC翻折到圖4的位置,ED′與AB相交于點(diǎn)F,求證:AF=FD′.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com