【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.
(1)PC=PE;
(2)求∠CPE的度數;
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120°時,連接CE,試探究線段AP與線段CE的數量關系,并說明理由.
【答案】(1)證明見試題解析;(2)90°;(3)AP=CE.
【解析】
試題分析:(1)先證出△ABP≌△CBP,得到PA=PC,由PA=PE,得到PC=PE;
(2)由△ABP≌△CBP,得到∠BAP=∠BCP,進而得到∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到結論;
(3)借助(1)和(2)的證明方法容易證明結論.
試題解析:(1)在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,∵AB=BC,∠ABP=∠CBP,PB=PB,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;
(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(對頂角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;
(3)在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,∵AB=BC,∠ABP=∠CBP,PB=PB,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(對頂角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等邊三角形,∴PC=CE,∴AP=CE.
科目:初中數學 來源: 題型:
【題目】如圖1,我們在2016年1月的日歷中標出一個十字星,并計算它的“十字差”(將十字星左右兩數,上下兩數分別相乘再將所得的積作差,稱為該十字星的“十字差”).該十字星的十字差為12×14﹣6×20=48,再選擇其它位置的十字星,可以發(fā)現“十字差”仍為48.
(1)如圖2,將正整數依次填入5列的長方形數表中,探究不同位置十字星的“十字差”,可以發(fā)現相應的“十字差”也是一個定值,則這個定值為 .
(2)若將正整數依次填入k列的長方形數表中(k≥3),繼續(xù)前面的探究,可以發(fā)現相應“十字差”為與列數k有關的定值,請用k表示出這個定值,并證明你的結論.
(3)如圖3,將正整數依次填入三角形的數表中,探究不同十字星的“十字差”,若某個十字星中心的數在第32行,且其相應的“十字差”為2015,則這個十字星中心的數為(直接寫出結果).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC點D為直線BC上一動點(點D不與B、C重合) .以AD為邊作正方形ADEF,連接CF.
(1)如圖①,當點D在線段BC上時,求證:①BD⊥CF;②CF=BCCD.
(2)如圖②,當點D在線段BC的延長線上時,其他條件不變,請直接寫出CF、BC、CD三條線段之間的關系.
(3)如圖③,當點D在線段BC的反向延長線上時,且點A、F分別在直線BC的兩側,其他條件不變:①請直接寫出CF、BC、CD三條線段之間的關系;②若連接正方形對角線AE、DF,交點為O,連接OC,探究△AOC的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖四邊形AOBC為正方形,點C的坐標為(4 ,0),動點P沿著折線OACB的方向以1個單位每秒的速度勻速運動,同時點Q沿著折線OBCA的方向勻速運動,速度是2個單位長度每秒,運動時間為t秒,當他們相遇時同時停止運動.
(1)點A的坐標是正方形AOBC的面積是 .
(2)將正方形繞點O順時針旋轉45°,求旋轉后的正方形與原正方形的重疊部分的面積.
(3)運動時間t為多少秒時,以A、P、B、Q四點為頂點的四邊形為平行四邊形?
(4)是否存在這樣的t值,使△OPQ成為等腰三角形?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題是真命題的是( )
A.兩邊及其中一邊的對角分別相等的兩個三角形全等
B.平分弦的直徑垂直于弦
C.一組對邊平行且一組對角相等的四邊形是平行四邊形
D.兩條直線被第三條直線所截,同位角相等
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標分別是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1 .
(1)在圖中畫出△A1B1C1;
(2)點A1 , B1 , C1的坐標分別為、、;
(3)若y軸有一點P,使△PBC與△ABC面積相等,求出P點的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com