(2004•黃岡)如圖所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分線EF交AC于點E,交BC于點F.求證:BF=2CF.

【答案】分析:利用輔助線,連接AF,求出CF=AF,∠BAF=90°,再根據(jù)AB=AC,∠BAC=120°可求出∠B的度數(shù),由直角三角形的性質(zhì)即可求出BF=2AF=2CF.
解答:證明:連接AF,(1分)
∵AB=AC,∠BAC=120°,
∴∠B=∠C==30°,(1分)
∵AC的垂直平分線EF交AC于點E,交BC于點F,
∴CF=AF(線段垂直平分線上的點到線段兩端點的距離相等),
∴∠FAC=∠C=30°(等邊對等角),(2分)
∴∠BAF=∠BAC-∠FAC=120°-30°=90°,(1分)
在Rt△ABF中,∠B=30°,
∴BF=2AF(在直角三角形中,30°角所對的直角邊等于斜邊的一半),(1分)
∴BF=2CF(等量代換).
點評:本題考查的是線段垂直平分線的性質(zhì)(垂直平分線上任意一點,和線段兩端點的距離相等)有關(guān)知識,難度一般.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2004•黃岡)如圖,Rt△ABO的頂點A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO=
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A、C的坐標和△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《反比例函數(shù)》(04)(解析版) 題型:解答題

(2004•黃岡)如圖,Rt△ABO的頂點A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO=
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A、C的坐標和△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年貴州省六盤水市盤縣響水中學中考數(shù)學模擬密卷(四)(解析版) 題型:解答題

(2004•黃岡)如圖,Rt△ABO的頂點A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO=
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A、C的坐標和△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年湖北省黃岡市中考數(shù)學試卷(解析版) 題型:解答題

(2004•黃岡)如圖,Rt△ABO的頂點A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO=
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A、C的坐標和△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年四川省中考數(shù)學試卷(解析版) 題型:解答題

(2004•黃岡)如圖,Rt△ABO的頂點A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO=
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A、C的坐標和△AOC的面積.

查看答案和解析>>

同步練習冊答案