如圖,等腰Rt△ABC中,∠ACB=90°,在直角坐標(biāo)系中如圖擺放,點(diǎn)A的坐標(biāo)為(0,2精英家教網(wǎng)),點(diǎn)B的坐標(biāo)為(6,0).
(1)直接寫(xiě)出線段AB的中點(diǎn)P的坐標(biāo)為
 
;
(2)求直線OC的解析式;
(3)動(dòng)點(diǎn)M、N分別從O點(diǎn)出發(fā),點(diǎn)M沿射線OC以每秒
2
個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)N沿線段OB以每秒1個(gè)長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),當(dāng)N點(diǎn)運(yùn)動(dòng)到B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng),設(shè)△PMN的面積為S(S≠0)運(yùn)動(dòng)時(shí)間為t秒,求S與t的函數(shù)關(guān)系式,并直接寫(xiě)出自變量t的取值范圍.
分析:(1)由于點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B的坐標(biāo)為(6,0),而P是線段AB的中點(diǎn),由此即可確定P的坐標(biāo);
(2)如圖,過(guò)點(diǎn)C作CE⊥OB,CD⊥OA,由此得到∠ADC=∠CEB=∠DCE=90°,接著得到∠ACD+∠ACE=90°,然后利用
等腰三角形的直線可以構(gòu)造確定條件證明△ACD≌△BCE,從而得到CE=CD,進(jìn)一步得到點(diǎn)C在第一象限的角平分線上,由此即可求出直線OC的解析式;
(3)如圖,①當(dāng)點(diǎn)M在點(diǎn)P左側(cè)時(shí),過(guò)點(diǎn)P作PF⊥OB,由題意可知OM=
2
t,ON=t,然后根據(jù)已知條件可以分別把線段 MN、NF等線段用t表示,然后就可以求出函數(shù)解析式;
 ②當(dāng)點(diǎn)M在點(diǎn)P右側(cè)時(shí),過(guò)點(diǎn)P作PG⊥OB,方法和①一樣可以求出函數(shù)解析式解決問(wèn)題.
解答:解:(1)P(3,1);

(2)過(guò)點(diǎn)C作CE⊥OB,CD⊥OA
∴∠ADC=∠CEB=∠DCE=90°精英家教網(wǎng)∴∠ACD+∠ACE=90°
在等腰Rt△ABC中
AC=BC,∠ACB=90°
∴∠BCE+∠ACE=90°(3分)
∴∠ACD=∠BCE
∴△ACD≌△BCE
∴CE=CD
∴點(diǎn)C在第一象限的角平分線上(4分)
∴直線OC的解析式為y=x;

(3)①當(dāng)點(diǎn)M在點(diǎn)P左側(cè)時(shí)
過(guò)點(diǎn)P作PF⊥OB
由題意可知
OM=
2
tON=t(5分)
∵點(diǎn)M在函數(shù)y=x上精英家教網(wǎng)
∴M(t,t)
∵N(t,0)
∴MN⊥x軸
∴MN=t
∵點(diǎn)P(3,1)(6分)
∴PF=1,OF=3
∴NF=OF-ON=3-t;
∴S=S梯形PMNF-S△PFN=
(PF+MN)•NF
2
-
PF•NF
2
=-
t2
2
+
3
2
t

 ②當(dāng)點(diǎn)M在點(diǎn)P右側(cè)時(shí)
過(guò)點(diǎn)P作PG⊥OB
由①可知(8分)
∴MN⊥x軸
∴MN=t
∵點(diǎn)P(3,1)(9分)精英家教網(wǎng)
∴PG=1,OG=3
∴NG=ON-OG=t-3
∴S=S梯形PMNG-S△PGN(10分)
S=
(PG+MN)•NG
2
-
PG•NG
2
=
(1+t)(t-3)
2
-
t-3
2
=
t(t-3)
2

=
t2
2
-
3t
2
(3<t≤6)(11分)
綜上,S=-
-
t2
2
+
3t
2
(0<t<3)
t2
2
-
3t
2
(3<t≤6)
點(diǎn)評(píng):此題是一次函數(shù)的綜合題,首先根據(jù)中點(diǎn)的性質(zhì)確定點(diǎn)的坐標(biāo),然后利用待定系數(shù)法和等腰直角三角形的性質(zhì)確定函數(shù)的解析式,最后采取割補(bǔ)法利用面積公式解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等腰Rt△ABC中,CA=CB=8
2
,點(diǎn)P是AB上一動(dòng)點(diǎn),設(shè)AP=x,操作:在射線AB上截取精英家教網(wǎng)PQ=AP,以PQ為一邊向上作正方形PQMN,設(shè)正方形PQMN與Rt△ABC重疊部分的面積為S.
(1)求S與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)S是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等腰Rt△ABC的直角邊長(zhǎng)為4,以A為圓心,直角邊AB為半徑作弧BC1,交斜邊AC于點(diǎn)C1,C1B1⊥AB于點(diǎn)B1,設(shè)弧BC1,C1B1,B1B圍成的陰影部分的面積為S1,然后以A為圓心,AB1為半徑作弧B1C2,交斜邊AC于點(diǎn)C2,C2B2⊥AB于點(diǎn)B2,設(shè)弧B1C2,C2B2,B2B1圍成的陰影部分的面積為S2,按此規(guī)律繼續(xù)作下去,得到的陰影部分的面積S3=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等腰Rt△ABC中斜邊AB=4,O是AB的中點(diǎn),以O(shè)為圓心的半圓分別與兩腰相切于點(diǎn)D、E,圖中陰影部分的面積是多少?請(qǐng)你把它求出來(lái).(結(jié)果用π表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,等腰Rt△OAB的直角邊OA的長(zhǎng)為1,以AB邊上的高OA1為直角邊,按逆時(shí)針?lè)较蜃鞯妊黂t△OA1B1,A1B1與OB相交于點(diǎn)A2.若再以O(shè)A2為直角邊按逆時(shí)針?lè)较蜃鞯妊黂t△OA2B2,A2B2與OB1相交于點(diǎn)A3,按此作法進(jìn)行下去,得到△OA3B3,△OA4B4,…,則△OA6B6的周長(zhǎng)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等腰Rt△ABC,AC=BC,以斜邊AB中點(diǎn)O為圓心作⊙O與AC邊相切于點(diǎn)D,交AB于點(diǎn)E,連接DE.
(1)求證:BC為⊙O的切線;
(2)求tan∠CDE的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案