【題目】已知線段MN=8,C是線段MN上一動點,在MN的同側(cè)分別作等邊△CMD和等邊△CNE.
(1)如圖①,連接DN與EM,兩條線段相交于點H,求證ME=DN,并求∠DHM的度數(shù);
(2)如圖②,過點D、E分別作線段MN的垂線,垂足分別為F、G,問:在點C運動過程中,DF+EG的長度是否為定值,如果是,請求出這個定值,如果不是請說明理由;
(3)當(dāng)點C由點M移到點N時,點H移到的路徑長度為(直接寫出結(jié)果)
【答案】
(1)
證明:∵△CMD與△CNE是等邊三角形,
∴CM=CD,EC=NC,∠DCM=∠ECN=60°,
∴∠DCN=∠MCE=120°,
在△MCE與△DCN中, ,
∴△MCE≌△DCN,
∴ME=DN,∠CME=∠CDN,
∵∠1=∠2,
∴180°﹣∠CME﹣∠1=180°﹣∠CDN﹣∠2,
∴∠DHM=∠DCM=60°;
(2)
解:DF+EG為定值,
理由:設(shè)MF=FC=x,則CG=NG=4﹣x,
∴DF= x,EG= (4﹣x),
∴DF+GE= x+ (4﹣x)=4 ;
(3)
【解析】(3)解:如圖③,當(dāng)點C由點M移到點N時,點H移到的路徑即為 ,
∵∠MHD=60°,
∴∠MHN=120°,
∴∠MPN=60°,
∴∠MON=120°,
∵M(jìn)N=8,
∴OM=ON= ,
∴點H移到的路徑長度= = ,
所以答案是: .
【考點精析】根據(jù)題目的已知條件,利用三角形的內(nèi)角和外角和等邊三角形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;等邊三角形的三個角都相等并且每個角都是60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)2(10﹣0.5y)=﹣(1.5y+2)
(2)(x﹣5)=3﹣(x﹣5)
(3)﹣1=
(4)x﹣(x﹣9)=[x+(x﹣9)]
(5) -=0.5x+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y= +3與坐標(biāo)軸交于A、B兩點,⊙O的半徑為2,點P是⊙O上動點,△ABP面積的最大值為cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.
(1)求證AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線SN⊥直線WE,垂足是點O,射線ON表示正北方向,射線OE表示正東方向.已知射線OB的方向是南偏東m°,射線OC的方向是北偏東n°,且m°的角與n°的角互余.
(1)寫出圖中與∠BOE互余的角: .
(2)若射線OA是∠BON的角平分線,探索∠BOS與∠AOC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,A、B、C分別為數(shù)軸上的三點,A點對應(yīng)的數(shù)為60,B點在A點的左側(cè),并且與A點的距離為30,C點在B點左側(cè),C點到A點距離是B點到A點距離的4倍.
(1)求出數(shù)軸上B點對應(yīng)的數(shù)及AC的距離.
(2)點P從A點出發(fā),以3單位/秒的速度向終點C運動,運動時間為t秒.
①當(dāng)P點在AB之間運動時,則BP= .(用含t的代數(shù)式表示)
②P點自A點向C點運動過程中,何時P,A,B三點中其中一個點是另外兩個點的中點?求出相應(yīng)的時間t.
③當(dāng)P點運動到B點時,另一點Q以5單位/秒的速度從A點出發(fā),也向C點運動,點Q到達(dá)C點后立即原速返回到A點,那么Q點在往返過程中與P點相遇幾次?直.接.寫.出.相遇時P點在數(shù)軸上對應(yīng)的數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解填空,并在括號內(nèi)填注理由.
如圖,已知AB∥CD,M,N分別交AB,CD于點E,F,∠1=∠2,求證:EP∥FQ.
證明:∵AB∥CD( )
∴∠MEB=∠MFD( ).
又∵∠1=∠2( )
∠MEB﹣∠1=∠MFD﹣∠2( )
即:∠MEP=∠
EP∥ .( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AD∥BC,AB∥CD,E在線段BC延長線上,AE平分∠BAD.連接DE,若∠ADE=3∠CDE,∠AED=60°.
(1)求證:∠ABC=∠ADC;
(2)求∠CDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課堂上學(xué)習(xí)了勾股定理后,知道“勾三、股四、弦五”.王老師給出一組數(shù)讓學(xué)生觀察:3、4、5;5、12、13;7、24、25;9、40、41;…,學(xué)生發(fā)現(xiàn)這些勾股 數(shù)的勾都是奇數(shù),且從 3 起就沒有間斷過,于是王老師提出以下問題讓學(xué)生解決.
(1)請你根據(jù)上述的規(guī)律寫出下一組勾股數(shù):11、________、________;
(2)若第一個數(shù)用字母a(a為奇數(shù),且a≥3)表示,那么后兩個數(shù)用含a的代數(shù)式分別怎么表示?小明發(fā)現(xiàn)每組第二個數(shù)有這樣的規(guī)律4=,12=,24=……,于是他很快表示了第二數(shù)為 ,則用含a的代數(shù)式表示第三個數(shù)為________;
(3)用所學(xué)知識證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com