【題目】網(wǎng)癮低齡化已引起社會各界的高度關注,有關部門在全國范圍內(nèi)對12~35歲的網(wǎng)癮人群進行了隨機抽樣查,得到了如下兩個不定整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
(1)求本次調(diào)查了多少名網(wǎng)癮人員?
(2)通過計算補全條形統(tǒng)計圖,在扇形統(tǒng)計圖中,18~23歲部分的圓心角的度數(shù)為 ;
(3)目前我國12﹣35歲網(wǎng)癮人數(shù)約為3000萬,請估計其中12﹣23歲的人數(shù).
【答案】(1)本次調(diào)查了1500名網(wǎng)癮人員;(2)108°;(3)12﹣23歲的約有1500萬人
【解析】
(1)根據(jù)30﹣35歲的人數(shù)和所占的百分比可以求得本次調(diào)查了多少名網(wǎng)癮人員;
(2)根據(jù)(1)中的結(jié)果可以求得12﹣17歲的人數(shù)和18~23歲部分的心角的度數(shù);
(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得12﹣23歲的人數(shù).
解:(1)330÷22%=1500(名),
答:本次調(diào)查了1500名網(wǎng)癮人員;
(2)12﹣17歲的有:1500﹣450﹣420﹣330=300(人),
補全的條形統(tǒng)計圖如下圖所示,
在形統(tǒng)計圖中,18~23歲部分的心角的度數(shù)為:,
故答案為:108°;
(3)(萬人),
答:12﹣23歲的約有1500萬人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸,軸分別交于點,經(jīng)過點的拋物線與軸的另一個交點為點,點是拋物線上一點,過點作軸于點,連接,設點的橫坐標為.
求拋物線的解析式;
當點在第三象限,設的面積為,求與的函數(shù)關系式,并求出的最大值及此時點的坐標;
連接,若,請直接寫出此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BC=9,∠ABC的平分線BF交AC于點F,點D、點E分別是邊AB、AC上的點,若,則BD﹣DE的值為( 。
A.3B.3.5C.4D.4.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),二次函數(shù)y=ax2﹣bx(a≠0)的圖象與x軸、直線y=x的交點分別為點A(4,0)、B(5,5).
(1)a= ,b= ,∠AOB= °;
(2)連接AB,點P是拋物線上一點(異于點A),且∠PBO=∠OBA,求點P的坐標 ;
(3)如圖(2),點C、D是線段OB上的動點,且CD=2.設點C的橫坐標為m.
①過點C、D分別作x軸的垂線,與拋物線相交于點F、E,連接EF.當CF+DE取得最大值時,求m的值并判斷四邊形CDEF的形狀;
②連接AC、AD,求m為何值時,AC+AD取得最小值,并求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(﹣3,m+8),B(n,﹣6)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C,D的坐標分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與△ABC相似,則點E的坐標不可能是
A.(6,0) B.(6,3) C.(6,5) D.(4,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】市化工材料經(jīng)銷公司購進一種化工原料若干千克,價格為每千克30元.物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元.經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價x(元)的一次函數(shù),且當x=45時,y=10;x=55時,y=90.在銷售過程中,每天還要支付其他費用500元.
(1)求出y與x的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)關系式;
(3)當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)營家居收納盒,已知成批購進時的單價是20元.調(diào)查發(fā)現(xiàn):銷售單價是30元時,月銷售量是230件,而銷售單價每上漲1元,月銷售量就減少10件,但每個收納盒售價不能高于40元.設每個收納盒的銷售單價上漲了元時(為正整數(shù)),月銷售利潤為元.
(1)求與的函數(shù)關系式.
(2)每個收納盒的售價定為多少元時,月銷售利潤恰為2520元?
(3)每件玩具的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com