【題目】已知在平面直角坐標(biāo)系中,拋物線與x軸相交于點(diǎn)A,B,與y軸相交于點(diǎn)C,直線y=-x-4經(jīng)過A,C兩點(diǎn),
(1)求拋物線的表達(dá)式;
(2)如果點(diǎn)P,Q在拋物線上(P點(diǎn)在對稱軸左邊),且PQ∥AO,PQ=AO,求P,Q的坐標(biāo);
(3)動(dòng)點(diǎn)M在直線y=-x-4上,且以C,O,M為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)M的坐標(biāo).
【答案】(1);(2)P點(diǎn)坐標(biāo)(﹣2,﹣4),Q點(diǎn)坐標(biāo)(0,﹣4);(3)M點(diǎn)的坐標(biāo)為(﹣,-),(﹣3,-1)
【解析】
(1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得A、C點(diǎn)坐標(biāo),根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)平行于x軸的直線與拋物線的交點(diǎn)關(guān)于對稱軸對稱,可得P、Q關(guān)于直線x=1對稱,根據(jù)PQ的長,可得P點(diǎn)的橫坐標(biāo),Q點(diǎn)的橫坐標(biāo),根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案;
(3)根據(jù)兩組對邊對應(yīng)成比例且夾角相等的兩個(gè)三角形相似,可得CM的長,根據(jù)等腰直角三角形的性質(zhì),可得MH的長,再根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案.
解:(1)當(dāng)x=0時(shí),y=-4,即C(0,-4);
當(dāng)y=0時(shí),-x-4=0,解得,x=-4,即A(-4,0)
將A,C點(diǎn)坐標(biāo)代入,得
,
解得.
拋物線的表達(dá)式為.
(2)∵A(-4,0),
∴AO=4.
∵ PQ=AO,
∴PQ=AO=2.
又∵PQ∥AO,
∴ P、Q關(guān)于對稱軸x=﹣1對稱.
∴P點(diǎn)的橫坐標(biāo)為﹣1﹣1=﹣2,Q點(diǎn)的橫坐標(biāo)為﹣1+1=0.
當(dāng)x=﹣2時(shí),y=×(﹣2)2+(﹣2)-4=﹣4,
∴P(﹣2,﹣4);
當(dāng)x=0,y=×(0)2+0-4=﹣4,
∴Q(0,﹣4);
P點(diǎn)坐標(biāo)(﹣2,﹣4),Q點(diǎn)坐標(biāo)(0,﹣4).
(3)由,得,
∴B(-2,0)
∵A(-4,0),C(0,-4)
∴OA =OC=4,OB=2.
∴A B=6,,∠ MCO=∠CAB=45o.
①當(dāng)△MCO∽△CAB時(shí),,
即,解得CM=.
如圖,過點(diǎn)M作MN⊥y軸于點(diǎn)N,則.
當(dāng)時(shí),,
∴M(,).
②當(dāng)△OCM∽△CAB時(shí),,
即,解得CM=.
同①可得,.
當(dāng)時(shí),,
∴M(,).
綜上所述:M點(diǎn)的坐標(biāo)為(﹣,-),(﹣3,-1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了考查學(xué)生的綜合素質(zhì),某市決定:九年級(jí)畢業(yè)生統(tǒng)一參加中考實(shí)驗(yàn)操作考試,根據(jù)今年的實(shí)際情況,中考實(shí)驗(yàn)操作考試科目為:(物理)、(化學(xué))、(生物),每科試題各為道,考生隨機(jī)抽取其中道進(jìn)行考試.小明和小麗是某校九年級(jí)學(xué)生,需參加實(shí)驗(yàn)考試.
(1)小明抽到化學(xué)實(shí)驗(yàn)的概率為 ;
(2)若只從考試科目考慮,小明和小麗抽到不同科目的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示AB為⊙O的一條弦,點(diǎn)C為劣弧AB的中點(diǎn),E為優(yōu)弧AB上一點(diǎn),點(diǎn)F在AE的延長線上,且BE=EF,線段CE交弦AB于點(diǎn)D.
①求證:CE∥BF;
②若BD=2,且EA:EB:EC=3:1:,求△BCD的面積(注:根據(jù)圓的對稱性可知OC⊥AB).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場銷售一批襯衫,每天可售出20件,每件盈利40元,為了擴(kuò)大銷售,減少庫存,決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果一件襯衫每降價(jià)1元,每天可多售出2件.
(1)若商場每天要盈利1200元,每件應(yīng)降價(jià)多少元?
(2)設(shè)每件降價(jià)x元,每天盈利y元,每件降價(jià)多少元時(shí),商場每天的盈利達(dá)到最大?盈利最大是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)C的坐標(biāo)為(0,4),OABC為矩形,反比例函數(shù) 的圖象過AB的中點(diǎn)D,且和BC相交于點(diǎn)E,F為第一象限的點(diǎn),AF=12,CF=13.
(1)求反比例函數(shù)和直線OE的函數(shù)解析式;
(2)求四邊形OAFC的面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:①HE=HF;②EC平分∠DCH;③線段BF的取值范圍為3≤BF≤4;④當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=2.以上結(jié)論中,你認(rèn)為正確的有( 。﹤(gè).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,△ABC中,AB=AC,BC=6,BE為中線,點(diǎn)D為BC邊上一點(diǎn);BD=2CD,DF⊥BE于點(diǎn)F,EH⊥BC于點(diǎn)H.
(1)CH的長為_____;
(2)求BF·BE的值:
(3)如圖2,連接FC,求證:∠EFC=∠ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=4,若將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)A′,點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)C′,點(diǎn)D為A′B的中點(diǎn),連接AD.則點(diǎn)A的運(yùn)動(dòng)路徑與線段AD、A′D圍成的陰影部分面積是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com