【題目】如圖,已知點O是△ABC的兩條角平分線的交點,
(1)若∠A=30°,則∠BOC的大小是 ;
(2)若∠A=60°,則∠BOC的大小是 ;
(3)若∠A=n°,則∠BOC的大小是多少?試用學過的知識說明理由.
【答案】 (1) 105°; (2) 120°;(3) n°+90°.
【解析】試題分析:∠BOC+∠OBC+∠OCB=180°,根據(jù)角平分線的定義得到∠ABC=2∠OBC,∠ACB=2∠OCB,等量代換得到∠BOC+ ∠ABC+∠ACB=180°,根據(jù)三角形的內角和定理即可得到結論.
試題解析:
(1)如圖,在△ABC中,∠A+∠ABC+∠ACB=180°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∵BO,CO分別是∠ABC和∠ACB的平分線,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴∠BOC+ ∠ABC+∠ACB=180°,
又∵在△ABC中,∠A+∠ABC+∠ACB=180°,
∴∠BOC=∠A+90°=105°;
(2)如圖,在△ABC中,∠A+∠ABC+∠ACB=180°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∵BO,CO分別是∠ABC和∠ACB的平分線,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴∠BOC+∠ABC+∠ACB=180°,
又∵在△ABC中,∠A+∠ABC+∠ACB=180°,
∴∠BOC=∠A+90°=120°;
(3)∠BOC=n°+90°,
∵OB、OC是兩條角平分線,
∴∠OBC=∠ABC, ∠OCB=∠ACB ,
在△OBC中,∠BOC=180°-(∠OBC+∠OCB)
=180°-(∠ABC+∠ACB)
=180°-(∠ABC+∠ACB)
=180°-(180°-∠A)
=∠A+90°
=n°+90°.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象與y軸交于點C(0,﹣6),與x軸的一個交點坐標是A(﹣2,0).
(1)求二次函數(shù)的解析式,并寫出頂點D的坐標;
(2)將二次函數(shù)的圖象沿x軸向左平移個單位長度,當 y<0時,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形OABC是邊長為4的正方形,點P為OA邊上任意一點(與點O、A不重合),連接CP,過點P作PM⊥CP交AB于點D,且PM=CP,過點M作MN∥AO,交BO于點N,連結ND、BM,設OP=t.
(1)求點M的坐標(用含t的代數(shù)式表示);
(2)試判斷線段MN的長度是否隨點P的位置的變化而改變?并說明理由.
(3)當t為何值時,四邊形BNDM的面積最;
(4)在x軸正半軸上存在點Q,使得△QMN是等腰三角形,請直接寫出不少于4個符合條件的點Q的坐標(用含t的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】使用某共享單車,行程在m千米以內收費1元,超過m千米的,每千米另收2元.若要讓使用該共享單車50%的人只花1元錢,m應。 )
A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com