【題目】某同學(xué)在平時(shí)的練習(xí)中,遇到下面一道題目:
如圖,∠AOC=90°,OE 平分∠BOC,OD平分∠AOB.
①若∠BOC=60°,求∠DOE 度數(shù);
②若∠BOC=α(0<α<90°),其他條件不變,求∠DOE 的度數(shù).
(1)下面是某同學(xué)對(duì)①問(wèn)的部分解答過(guò)程,請(qǐng)你補(bǔ)充完整.
∵OE 平分∠BOC,∠BOC=60°
∴∠BOE= . (角平分線的定義)
∵∠AOC=90°,∠BOC=60°
∴ ,
∵OD 平分∠AOB,
∴ ,(角平分線的定義)
∴∠DOE= .
(注:符號(hào)∵表示因?yàn),用符?hào)∴表示所以).
(2)仿照①的解答過(guò)程,完成第②小題.
【答案】(1)45°;(2)45°.
【解析】
(1)根據(jù)∠AOC、∠BOC的度數(shù)可得出∠AOB的度數(shù),根據(jù)角平分線的定義即可得出∠BOE、∠BOD的度數(shù),再根據(jù)∠DOE與∠BOE、∠BOD之間的關(guān)系通過(guò)角的計(jì)算即可得出結(jié)論;
(2)根據(jù)∠AOC、∠BOC的度數(shù)可得出∠AOB的度數(shù),根據(jù)角平分線的定義即可得出∠BOE、∠BOD的度數(shù),再根據(jù)∠DOE與∠BOE、∠BOD之間的關(guān)系通過(guò)角的計(jì)算即可得出結(jié)論.
(1) ∵OE 平分∠BOC,∠BOC=60°
∴∠BOE= 30° . (角平分線的定義)
∵∠AOC=90°,∠BOC=60°
∴ ∠AOB=150° ,
∵OD 平分∠AOB,
∴ ∠BOD=75° ,(角平分線的定義)
∴∠DOE= 45° .
(2)
∵OE 平分∠BOC,∠BOC=α.
∴∠BOE= (角平分線的定義)
∵∠AOC=90°,∠BOC=α
∴,
∵OD 平分∠AOB,
∴∠BOD=,(角平分線的定義)
∴∠DOE=45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如:3+2=(1+)2,善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n)2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把部分a+b的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m、n的式子分別表示a、b,得a= ,b= ;
(2)試著把7+4化成一個(gè)完全平方式.
(3)若a是216的立方根,b是16的平方根,試計(jì)算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一條筆直的公路上有A、B、C三地,A地在B、C兩地之間.甲、乙兩輛汽車(chē)分別從B、C兩地同時(shí)出發(fā),沿這條公路勻速相向行駛,甲勻速行駛1小時(shí)到達(dá)A地后繼續(xù)以相同的速度向C處行駛,到達(dá)C后停止,乙勻速行駛1.2小時(shí)后到達(dá)A地并停止運(yùn)動(dòng),甲、乙兩車(chē)離A地的距離y1、y2(千米)與行駛時(shí)間x(時(shí))的函數(shù)關(guān)系如圖所示.
(1)BC的距離為 km
⑵求線段MN的函數(shù)表達(dá)式;
⑶求點(diǎn)P的坐標(biāo),并說(shuō)明點(diǎn)P的實(shí)際意義;
⑷出發(fā)多長(zhǎng)時(shí)間后,甲、乙相距60km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖放置的兩個(gè)正方形,大正方形ABCD邊長(zhǎng)為a,小正方形CEFG邊長(zhǎng)為b(a>b),M在BC邊上,且BM=b,連接AM,MF,MF交CG于點(diǎn)P,將△ABM繞點(diǎn)A旋轉(zhuǎn)至△ADN,將△MEF繞點(diǎn)F旋轉(zhuǎn)至△NGF,給出以下五個(gè)結(jié)論:①∠MAD=∠AND;②CP=b﹣ ;③△ABM≌△NGF;④S四邊形AMFN=a2+b2;⑤A,M,P,D四點(diǎn)共圓,其中正確的個(gè)數(shù)是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAC=90°,AD⊥BC,垂足為點(diǎn) D.下列說(shuō)法中:①∠B的余角只有∠BAD;②∠B=∠C;③線段 AB 的長(zhǎng)度表示點(diǎn) B 到直線 AC 的距離;④AB·AC=BC·AD;一定正確的有( )
A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,平行四邊形 ABCD中,O是CD的中點(diǎn),連接AO并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:△AOD ≌ △EOC;
(2)連接AC,DE,當(dāng)∠B∠AEB _______ °時(shí),四邊形ACED是正方形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.從下列四個(gè)條件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三個(gè)為條件,余下的一個(gè)為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC中,∠ABC=90°,在直線AB上取一點(diǎn)M,使AM=BC,過(guò)點(diǎn)A作AE⊥AB且AE=BM,連接EC,再過(guò)點(diǎn)A作AN∥EC,交直線CM、CB于點(diǎn)F、N.
(1)如圖1,若點(diǎn)M在線段AB邊上時(shí),求∠AFM的度數(shù);
(2)如圖2,若點(diǎn)M在線段BA的延長(zhǎng)線上時(shí),且∠CMB=15°,求∠AFM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛貨車(chē)從A地開(kāi)往B地,一輛小汽車(chē)從B地開(kāi)往A地.同時(shí)出發(fā),都勻速行駛,各自到達(dá)終點(diǎn)后停止.設(shè)貨車(chē)、小汽車(chē)之間的距離為s(千米),貨車(chē)行駛的時(shí)間為t(小時(shí)),S與t之間的函數(shù)關(guān)系如圖所示.下列說(shuō)法中正確的有( )
①A、B兩地相距60千米;
②出發(fā)1小時(shí),貨車(chē)與小汽車(chē)相遇;
③小汽車(chē)的速度是貨車(chē)速度的2倍;
④出發(fā)1.5小時(shí),小汽車(chē)比貨車(chē)多行駛了60千米.
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com