(2013•濟(jì)寧)如圖,直線y=-
12
x+4與坐標(biāo)軸分別交于點(diǎn)A、B,與直線y=x交于點(diǎn)C.在線段OA上,動(dòng)點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)O做勻速運(yùn)動(dòng),當(dāng)點(diǎn)P、Q其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).分別過點(diǎn)P、Q作x軸的垂線,交直線AB、OC于點(diǎn)E、F,連接EF.若運(yùn)動(dòng)時(shí)間為t秒,在運(yùn)動(dòng)過程中四邊形PEFQ總為矩形(點(diǎn)P、Q重合除外).
(1)求點(diǎn)P運(yùn)動(dòng)的速度是多少?
(2)當(dāng)t為多少秒時(shí),矩形PEFQ為正方形?
(3)當(dāng)t為多少秒時(shí),矩形PEFQ的面積S最大?并求出最大值.
分析:(1)根據(jù)直線y=-
1
2
x+4與坐標(biāo)軸分別交于點(diǎn)A、B,得出A,B點(diǎn)的坐標(biāo),再利用EP∥BO,得出
OB
AO
=
EP
AP
=
1
2
,據(jù)此可以求得點(diǎn)P的運(yùn)動(dòng)速度;
(2)當(dāng)PQ=PE時(shí),以及當(dāng)PQ=PE時(shí),矩形PEFQ為正方形,分別求出即可;
(3)根據(jù)(2)中所求得出s與t的函數(shù)關(guān)系式,進(jìn)而利用二次函數(shù)性質(zhì)求出即可.
解答:解:(1)∵直線y=-
1
2
x+4與坐標(biāo)軸分別交于點(diǎn)A、B,
∴x=0時(shí),y=4,y=0時(shí),x=8,
BO
AO
=
4
8
=
1
2
,
當(dāng)t秒時(shí),QO=FQ=t,則EP=t,
∵EP∥BO,
OB
AO
=
EP
AP
=
1
2

∴AP=2t,
∵動(dòng)點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動(dòng),
∴點(diǎn)P運(yùn)動(dòng)的速度是每秒2個(gè)單位長(zhǎng)度;

(2)如圖1,當(dāng)PQ=PE時(shí),矩形PEFQ為正方形,
則∵OQ=FQ=t,PA=2t,
∴QP=8-t-2t=8-3t,
∴8-3t=t,
解得:t=2,
如圖2,當(dāng)PQ=PE時(shí),矩形PEFQ為正方形,
∵OQ=t,PA=2t,
∴OP=8-2t,
∴QP=t-(8-2t)=3t-8,
∴t=3t-8,
解得:t=4;

(3)如圖1,當(dāng)Q在P點(diǎn)的左邊時(shí),
∵OQ=t,PA=2t,
∴QP=8-t-2t=8-3t,
∴S矩形PEFQ=QP•QF=(8-3t)•t=8t-3t2,
當(dāng)t=-
8
2×(-3)
=
4
3
時(shí),
S矩形PEFQ的最大值為:
4×(-3)×0-82
4×(-3)
=
16
3
,
如圖2,當(dāng)Q在P點(diǎn)的右邊時(shí),
∵OQ=t,PA=2t,
∴2t>8-t,
∴t
8
3

∴QP=t-(8-2t)=3t-8,
∴S矩形PEFQ=QP•QF=(3t-8)•t=3t2-8t,
∵當(dāng)點(diǎn)P、Q其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng),
8
3
<t≤4,
當(dāng)t=-
8
2×(-3)
=
4
3
時(shí),S矩形PEFQ的最小,
∴t=4時(shí),S矩形PEFQ的最大值為:3×42-8×4=16,
綜上所述,當(dāng)t=4時(shí),S矩形PEFQ的最大值為:16.
點(diǎn)評(píng):此題主要考查了二次函數(shù)與一次函數(shù)的綜合應(yīng)用,得出P,Q不同的位置進(jìn)行分類討論得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)寧)如圖,放映幻燈時(shí),通過光源,把幻燈片上的圖形放大到屏幕上,若光源到幻燈片的距離為20cm,到屏幕的距離為60cm,且幻燈片中的圖形的高度為6cm,則屏幕上圖形的高度為
18
18
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)寧)如圖,在直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(1,4)和(3,0),點(diǎn)C是y軸上的一個(gè)動(dòng)點(diǎn),且A、B、C三點(diǎn)不在同一條直線上,當(dāng)△ABC的周長(zhǎng)最小時(shí),點(diǎn)C的坐標(biāo)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)寧)如圖,以等邊三角形ABC的BC邊為直徑畫半圓,分別交AB、AC于點(diǎn)E、D,DF是圓的切線,過點(diǎn)F作BC的垂線交BC于點(diǎn)G.若AF的長(zhǎng)為2,則FG的長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)寧)如圖1,在正方形ABCD中,E、F分別是邊AD、DC上的點(diǎn),且AF⊥BE.
(1)求證:AF=BE;
(2)如圖2,在正方形ABCD中,M、N、P、Q分別是邊AB、BC、CD、DA上的點(diǎn),且MP⊥NQ.MP與NQ是否相等?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)寧)如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),P是反比例函數(shù)y=
12
x
(x>0)圖象上任意一點(diǎn),以P為圓心,PO為半徑的圓與坐標(biāo)軸分別交于點(diǎn)A、B.
(1)求證:線段AB為⊙P的直徑;
(2)求△AOB的面積;
(3)如圖2,Q是反比例函數(shù)y=
12
x
(x>0)圖象上異于點(diǎn)P的另一點(diǎn),以Q為圓心,QO為半徑畫圓與坐標(biāo)軸分別交于點(diǎn)C、D.
求證:DO•OC=BO•OA.

查看答案和解析>>

同步練習(xí)冊(cè)答案