(2013•遵義)如圖,將一張矩形紙片ABCD沿直線MN折疊,使點(diǎn)C落在點(diǎn)A處,點(diǎn)D落在點(diǎn)E處,直線MN交BC于點(diǎn)M,交AD于點(diǎn)N.
(1)求證:CM=CN;
(2)若△CMN的面積與△CDN的面積比為3:1,求
MNDN
的值.
分析:(1)由折疊的性質(zhì)可得:∠ANM=∠CNM,由四邊形ABCD是矩形,可得∠ANM=∠CMN,則可證得∠CMN=∠CNM,繼而可得CM=CN;
(2)首先過點(diǎn)N作NH⊥BC于點(diǎn)H,由△CMN的面積與△CDN的面積比為3:1,易得MC=3ND=3HC,然后設(shè)DN=x,由勾股定理,可求得MN的長,繼而求得答案.
解答:(1)證明:由折疊的性質(zhì)可得:∠ANM=∠CNM,
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠ANM=∠CMN,
∴∠CMN=∠CNM,
∴CM=CN;

(2)解:過點(diǎn)N作NH⊥BC于點(diǎn)H,
則四邊形NHCD是矩形,
∴HC=DN,NH=DC,
∵△CMN的面積與△CDN的面積比為3:1,
S△CMN
S△CDN
=
1
2
•MC•NH
1
2
•DN•NH
=
MC
ND
=3,
∴MC=3ND=3HC,
∴MH=2HC,
設(shè)DN=x,則HC=x,MH=2x,
∴CM=3x=CN,
在Rt△CDN中,DC=
CN2-DN2
=2
2
x,
∴HN=2
2
x,
在Rt△MNH中,MN=
MH2+HN2
=2
3
x,
MN
DN
=
2
3
x
x
=2
3
點(diǎn)評:此題考查了矩形的性質(zhì)、折疊的性質(zhì)、勾股定理以及三角形的面積.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•遵義)如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點(diǎn)M,N從點(diǎn)C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A,B移動,同時動點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動,連接PM,PN,設(shè)移動時間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時,以A,P,M為頂點(diǎn)的三角形與△ABC相似?
(2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•遵義)如圖,直線l1∥l2,若∠1=140°,∠2=70°,則∠3的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•遵義)如圖,在4×4正方形網(wǎng)格中,任選取一個白色的小正方形并涂紅,使圖中紅色部分的圖形構(gòu)成一個軸對稱圖形的概率是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•遵義)如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,-
23
),且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).
(1)求拋物線的解析式及A,B兩點(diǎn)的坐標(biāo);
(2)在(1)中拋物線的對稱軸l上是否存在一點(diǎn)P,使AP+CP的值最?若存在,求AP+CP的最小值,若不存在,請說明理由;
(3)以AB為直徑的⊙M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的解析式.

查看答案和解析>>

同步練習(xí)冊答案