【題目】如圖,在矩形ABCD中,有一個菱形BFDE(點E、F分別在線段AB、CD上),記它們的面積分別為SABCD和SBFDE . 現(xiàn)給出下列命題:
(i)若 = ,則tan∠EDF=
(ii)若DE2=BDEF,則DF=2AD
那么,下面判斷正確的是( )

A.①正確,②正確
B.①正確,②錯誤
C.①錯誤,②正確
D.①錯誤,②錯誤

【答案】A
【解析】解:①設CF=x,DF=y,BC=h.
∵四邊形BFDE是菱形,
∴BF=DF=y,DE//BF.
= ,
= ,
= ,即cos∠BFC= ,
∴∠BFC=30°,
∵DE//BF,
∴∠EDF=∠BFC=30°,
∴tan∠EDF= ,
所以①是真命題.
②∵四邊形BFDE是菱形,
∴DF=DE.
∵S△DEF= DFAD= BDEF,
又∵DE2=BDEF(已知),
∴S△DEF= DE2= DF2 ,
∴DFAD= DF2 ,
∴DF=2AD,
所以②是真命題.
故選:A.

【考點精析】利用命題與定理對題目進行判斷即可得到答案,需要熟知我們把題設、結論正好相反的兩個命題叫做互逆命題.如果把其中一個叫做原命題,那么另一個叫做它的逆命題;經(jīng)過證明被確認正確的命題叫做定理.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項,得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯誤變形的個數(shù)是( 。﹤

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是( )
A.=﹣3
B.a2+a4=a6
C.(﹣ ﹣1=
D.(﹣π)0=1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C、G是⊙O上兩點,且AC=CG,過點C的直線CD⊥BG于點D,交BA的延長線于點E,連接BC,交OD于點F.
(1)求證:CD是⊙O的切線.
(2)若 ,求∠E的度數(shù).
(3)連接AD,在(2)的條件下,若CD= ,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,GBD上一點,連接CG并延長交BA的延長線于點F,交AD于點E,連接AG.

(1)求證:AGCG;

(2)求證:AG2GE·GF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算: ﹣(﹣1)2015×(﹣ ﹣2﹣|1﹣ |

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=-x+4分別與x軸、y軸交于A、B兩點.

(1)求A、B兩點的坐標;

(2)已知點C坐標為(2,0),設點C關于直線AB的對稱點為D,請直接寫出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,2)且與x軸交點的橫坐標分別為x1 , x2 , 其中﹣1<x1<0,1<x2<2,下列結論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結論正確的有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y= 的圖象經(jīng)過點A(﹣1,4),直線y=﹣x+b(b≠0)與雙曲線y= 在第二、四象限分別相交于P,Q兩點,與x軸、y軸分別相交于C,D兩點.
(1)求k的值;
(2)當b=﹣2時,求△OCD的面積;
(3)連接OQ,是否存在實數(shù)b,使得S△ODQ=S△OCD?若存在,請求出b的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案