(2003•汕頭)如圖⊙O是△ABC的外接圓,∠ABC=45°,AD∥OC交BC的延長線于D,AB交OC于E.
(1)求證:AD是⊙O的切線;
(2)若∠ACD=60°,求BC:CD的值.

【答案】分析:(1)連接OA,要證明切線,只需證明OA⊥AD,根據(jù)AD∥OC,只需得到OA⊥OC,根據(jù)圓周角定理即可證明;
(2)連接OB,根據(jù)已知的角,結(jié)合圓周角定理發(fā)現(xiàn)等腰直角三角形AOC和等腰三角形OBE和30度的直角三角形AOE;在根據(jù)它們的性質(zhì)得到BE和AE之間的關(guān)系,再根據(jù)平行線分線段成比例定理進行求解.
解答:(1)證明:連接OA;(1分)
∵∠ABC=45°,
∴∠AOC=2∠ABC=90°,
∴OA⊥OC;(3分)
又∵AD∥OC,
∴OA⊥AD,
∴AD是⊙O的切線.(5分)

(2)解:連接OB;
在△ABC中,∠ABC=45°,∠ACB的外角∠ACD=60°;(6分)
∴∠CAB=60°-45°=15°,
∵△OAC是等腰直角三角形,
∴∠CAO=45°,
∴∠BAO=∠CAO-∠CAB=30°;(8分)
∵在Rt△AOE中,∠EAO=∠BAO=30°,
∴OE=AE;
∵在△AOB中,OA=OB,
∴∠ABO=∠BAO=30°,∠AOB=120°,
∴∠EOB=∠AOB-∠AOC=120°-90°=∠EBO,(10分)
∴BE=OE,
∴BE=
即BE:EA=1:2;
又∵EC∥AD,
∴BC:CD=BE:EA=1:2.(12分)
點評:掌握切線的判定定理.綜合運用了圓周角定理、等腰直角三角形的性質(zhì)、等腰三角形的性質(zhì)、30度的直角三角形的性質(zhì)得到有關(guān)線段之間的關(guān)系,熟練運用平行線分線段成比例定理進行求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《尺規(guī)作圖》(01)(解析版) 題型:解答題

(2003•汕頭)如圖,已知在△ABC中,∠A=90°,請用圓規(guī)和直尺作⊙P,使圓心P在AC上,且與AB、BC兩邊都相切.(要求保留作圖痕跡,不必寫出作法和證明)

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《四邊形》(05)(解析版) 題型:解答題

(2003•汕頭)如圖,已知在四邊形ABCD中,AB∥CD,AD∥BC,P、Q分別為AB、CD上的點,且AP=CQ,求證:PD=QB.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年廣東省汕頭市中考數(shù)學試卷(解析版) 題型:解答題

(2003•汕頭)如圖,已知在△ABC中,∠A=90°,請用圓規(guī)和直尺作⊙P,使圓心P在AC上,且與AB、BC兩邊都相切.(要求保留作圖痕跡,不必寫出作法和證明)

查看答案和解析>>

科目:初中數(shù)學 來源:2003年廣東省汕頭市中考數(shù)學試卷(解析版) 題型:解答題

(2003•汕頭)如圖,已知在四邊形ABCD中,AB∥CD,AD∥BC,P、Q分別為AB、CD上的點,且AP=CQ,求證:PD=QB.

查看答案和解析>>

同步練習冊答案