解:(1)CD=BE;理由如下 ∵△ABC和△ADE為等邊三角形, ∴AB=AC,AE=AD,∠BAC=∠EAD=60°, ∵∠BAE=∠BAC-∠EAC=60°-∠EAC, ∠DAC=∠DAE-∠EAC=60°-∠EAC, ∴∠BAE=∠DAC, ∴△ABE≌△ACD, ∴CD=BE; (2)△AMN是等邊三角形;理由如下: ∵△ABE≌△ACD, ∴∠ABE=∠ACD, ∵M(jìn)、N分別是BE、CD的中點(diǎn), ∴BM=, ∵AB=AC,∠ABE=∠ACD, ∴△ABM≌△ACN, ∴AM=AN,∠MAB=∠NAC, ∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°, ∴△AMN是等邊三角形, 設(shè)AD=a,則AB=2a, ∵AD=AE=DE,AB=AC, ∴CE=DE, ∵△ADE為等邊三角形, ∴∠DEC=120°,∠ADE=60°, ∴∠EDC=∠ECD=30°, ∴∠ADC=90°, ∴在Rt△ADC中,AD=a,∠ACD=30°, ∴CD=, ∵N為DC中點(diǎn), ∴, ∴, ∵△ADE,△ABC,△AMN為等邊三角形, ∴S△ADE∶S△ABC∶S△AMN=。 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2009年湖南省常德市中考數(shù)學(xué)試題及答案 題型:059
如圖,若△ABC和△ADE為等邊三角形,M,N分別EB,CD的中點(diǎn),易證:CD=BE,△AMN是等邊三角形.
(1)當(dāng)把△ADE繞A點(diǎn)旋轉(zhuǎn)到如圖的位置時(shí),CD=BE是否仍然成立?若成立請(qǐng)證明,若不成立請(qǐng)說明理由;
(2)當(dāng)△ADE繞A點(diǎn)旋轉(zhuǎn)到如圖的位置時(shí),△AMN是否還是等邊三角形?若是,請(qǐng)給出證明,并求出當(dāng)AB=2AD時(shí),△ADE與△ABC及△AMN的面積之比;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011—2012學(xué)年陜西西安閻良區(qū)七年級(jí)下期期末數(shù)學(xué)試卷(帶解析) 題型:解答題
四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖①,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖②,若∠ABC的角平分線交DC于點(diǎn)E,且BE∥AD,試求出∠C的度數(shù);
(3)如圖③,若∠ABC和∠BCD的角平分線交于點(diǎn)E,試求出∠BEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇鹽城市鹽都區(qū)九年級(jí)上學(xué)期期末統(tǒng)考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖1,若△ABC和△ADE為等腰直角三角形,AB=AC,AD=AE,M,N分別EB,CD的中點(diǎn).
(1)易證:①CD=BE ;②△AMN是 三角形;
(2)當(dāng)把△ADE繞A點(diǎn)旋轉(zhuǎn)到圖2的位置時(shí),
①求證:CD=BE;
②判斷△AMN的形狀,并證明你的結(jié)論;
(3)當(dāng)△ADE繞A點(diǎn)旋轉(zhuǎn)到圖3的位置時(shí),(2)中的結(jié)論是否成立?直接寫出即可,不要求證明;并求出當(dāng)AB=2AD時(shí),△ADE與△ABC及△AMN的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1若△ABC和△ADE為等邊三角形,M,N分別EB,CD的中點(diǎn),易證:CD=BE,△AMN是等邊三角形.
(1)當(dāng)把△ADE繞A點(diǎn)旋轉(zhuǎn)到圖2位置時(shí),CD=BE是否仍然成立?若成立請(qǐng)證明,若不成立請(qǐng)說明理由;
(2)當(dāng)△ADE繞A點(diǎn)旋轉(zhuǎn)到圖3位置時(shí),△AMN是否還是等邊三角形?若是,請(qǐng)給出證明,并求出當(dāng)AB=2AD時(shí),△ADE與△ABC及△AMN的面積之比;若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com