正方形ABCD的對(duì)角線的長(zhǎng)與它的邊長(zhǎng)的比是________.

:1
分析:設(shè)正方形的邊長(zhǎng)AB為x,連結(jié)AC,根據(jù)勾股定理求出AC的值就可以得出結(jié)論.
解答:解:如圖,設(shè)AB=x,
∵四邊形ABCD是正方形,
∴AB=BC=x,∠B=90°.
在Rt△ABC中由勾股定理,得
AC==x.
AC:AB=x:x=:1.
故答案為::1.
點(diǎn)評(píng):本題考查了正方形的性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,比的意義的運(yùn)用,在解答時(shí)根據(jù)正方形的性質(zhì)求出對(duì)角線的長(zhǎng)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,正方形ABCD的對(duì)角AC,BD交于點(diǎn)O,,則結(jié)論①AB=BC=CD=DA;②AO=BO=CO=DO;③AC⊥BD中正確的有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E是射線DA一動(dòng)點(diǎn)(DE>1),連結(jié)BE,以BE為邊在BE上方作正方形BEFG,設(shè)M為正方形BEFG的中心,如果定義:只有一組對(duì)角是直角的四邊形叫做損矩形.
(1)試找出圖中的一個(gè)損矩形并簡(jiǎn)單說(shuō)明理由.
(2)連接AM,無(wú)論點(diǎn)E位置怎樣變化,求證:DB∥AM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,正方形ABCD的對(duì)角AC,BD交于點(diǎn)O,則結(jié)論①AB=BC=CD=DA;②AO=BO=CO=DO;③AC⊥BD中正確的有


  1. A.
    0個(gè)
  2. B.
    1個(gè)
  3. C.
    2個(gè)
  4. D.
    3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•宜昌)如圖,正方形ABCD的對(duì)角AC,BD交于點(diǎn)O,則結(jié)論①AB=BC=CD=DA;②AO=BO=CO=DO;③AC⊥BD中正確的有( )

A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(01)(解析版) 題型:選擇題

(2002•宜昌)如圖,正方形ABCD的對(duì)角AC,BD交于點(diǎn)O,則結(jié)論①AB=BC=CD=DA;②AO=BO=CO=DO;③AC⊥BD中正確的有( )

A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案