如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=-
1
2
x2+bx-2
的圖象與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)右側(cè)),一次函數(shù)y=mx+n(m≠0)的圖象經(jīng)過(guò)A、C兩點(diǎn),已知tan∠BAC=
1
2

(1)求該二次函數(shù)和一次函數(shù)的解析式;
(2)連接BC,求△ABC的面積.
分析:(1)由二次函數(shù)y=-
1
2
x2+bx-2
的解析式可求出和y軸交點(diǎn)的坐標(biāo)即點(diǎn)C的坐標(biāo),由已知條件求出OA的長(zhǎng)度進(jìn)而求出點(diǎn)A的坐標(biāo),把A,C的坐標(biāo)分別代入即可求出二次函數(shù)和一次函數(shù)的解析式;
(2)令y=0,求出B點(diǎn)的坐標(biāo)即OB的長(zhǎng)度,所以AB的長(zhǎng)度可以求出,又因?yàn)锳B上的高為OC,利用面積公式即可求出△ABC的面積.
解答:解:(1)在y=-
1
2
x2+bx-2
中,
令x=0,得y=-2,
∴C(0,-2),
∴OC=2,
在Rt△AOC中,OA=
OC
tan∠BAC
=4,
∴A(4,0).
y=-
1
2
x2+bx-2
過(guò)A(4,0),
0=-
1
2
×42+b×4-2

∴b=
5
2
,
y=-
1
2
x2+
5
2
x-2

∵y=mx+n(m≠0)過(guò)A(4,0)、C(0,-2),
0=4m+n
-2=n
,
m=
1
2
n=-2

∴y=
1
2
x-2;

(2)在y=-
1
2
x2+
5
2
x-2
中,
令y=0,得x1=1,x2=4,
∴B(1,0),
∴OB=1,
∴AB=OA-OB=3,
∴S△ABC=
1
2
×AB•OC=
1
2
×3×2=3.
點(diǎn)評(píng):本題考查了二次函數(shù)和一次函數(shù)的交點(diǎn)問(wèn)題,解答本題的關(guān)鍵是進(jìn)行數(shù)形結(jié)合進(jìn)行解題,要熟練掌握二次函數(shù)和一次函數(shù)的性質(zhì),本題是一道比較不錯(cuò)的習(xí)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案