已知,K是圖中所示正方體中棱CD的中點(diǎn),連接KE、AE,則cos∠KEA的值為   
【答案】分析:設(shè)正方體的棱長(zhǎng)為a.先根據(jù)正方體的性質(zhì),由勾股定理,分別計(jì)算出AE、AK、EK的長(zhǎng)度,得出△AKE為等腰三角形,再過(guò)點(diǎn)K作KM⊥AE于M,根據(jù)等腰三角形三線合一的性質(zhì)得出EM=AE,∠KME=90°,然后在直角三角形KEM中根據(jù)余弦函數(shù)的定義進(jìn)行解答即可.
解答:解:連接AK.設(shè)正方體的棱長(zhǎng)為a.
由勾股定理,得AE=a,AK=EK=a.
過(guò)點(diǎn)K作KM⊥AE于M,則AM=EM=AE=a.
在直角三角形KEM中,∠KME=90°,
∴cos∠KEA====
故答案為
點(diǎn)評(píng):本題考查了正方體的性質(zhì),勾股定理,等腰三角形的性質(zhì)及解直角三角形,綜合性較強(qiáng),難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•徐州模擬)已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A、C兩點(diǎn)的坐標(biāo)分別為A(4,2),C(n,-2)(其中n>0),點(diǎn)B在x軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點(diǎn)C移動(dòng),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P移動(dòng)的路徑的長(zhǎng)為l,△POC的面積為S,S與l的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.
(1)結(jié)合以上信息及圖2填空:圖2中的m=
2
5
2
5
;
(2)求B、C兩點(diǎn)的坐標(biāo)及圖2中OF的長(zhǎng);
(3)若OM是∠AOB的角平分線,且點(diǎn)G與點(diǎn)H分別是線段AO與射線OM上的兩個(gè)動(dòng)點(diǎn),直接寫(xiě)出HG+AH的最小值,請(qǐng)?jiān)趫D3中畫(huà)出示意圖并簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A、C兩點(diǎn)的坐標(biāo)分別為A(4,2),C(n,-2)(其中n>0),點(diǎn)B在x軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點(diǎn)C移動(dòng),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P移動(dòng)的路徑的長(zhǎng)為l,△POC的面積為S,S與l的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

(1)結(jié)合以上信息及圖2填空:圖2中的m=
2
5
2
5

(2)求B、C兩點(diǎn)的坐標(biāo)及圖2中OF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A,C兩點(diǎn)的坐標(biāo)分別為A(2,3),C(n,-3)(其中n>0),點(diǎn)B在x軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點(diǎn)C移動(dòng),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P移動(dòng)的路徑的長(zhǎng)為x,△POC的面積為S,S與x的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.
(1)求B,C兩點(diǎn)的坐標(biāo)及圖2中OF的長(zhǎng);
(2)在圖1中,當(dāng)動(dòng)點(diǎn)P恰為經(jīng)過(guò)O,B兩點(diǎn)的拋物線W的頂點(diǎn)時(shí),
①求此拋物線W的解析式;
②若點(diǎn)Q在直線y=-1上方的拋物線W上,坐標(biāo)平面內(nèi)另有一點(diǎn)R,滿足以B,P,Q,R四點(diǎn)為頂點(diǎn)的四邊形是菱形,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A,C兩點(diǎn)的坐標(biāo)分別為A(2,3),C(n,-3)(其中n>0),點(diǎn)B在x軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點(diǎn)C移動(dòng),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P移動(dòng)的路徑的長(zhǎng)為l,△POC的面積為S,S與l的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

(1)結(jié)合以上信息及圖2填空:圖2中的m=
13
13
;
(2)求B,C兩點(diǎn)的坐標(biāo)及圖2中OF的長(zhǎng);
(3)在圖1中,當(dāng)動(dòng)點(diǎn)P恰為經(jīng)過(guò)O,B兩點(diǎn)的拋物線W的頂點(diǎn)時(shí),
①求此拋物線W的解析式;
②若點(diǎn)Q在直線y=-1上方的拋物線W上,坐標(biāo)平面內(nèi)另有一點(diǎn)R,滿足以B,P,Q,R四點(diǎn)為頂點(diǎn)的四邊形是菱形,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A、C兩點(diǎn)的坐標(biāo)分別為A(4,2),C(n,-2)(其中n>0),點(diǎn)B在x軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點(diǎn)C移動(dòng),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P移動(dòng)的路徑的長(zhǎng)為l,△POC的面積為S,S與l的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

(1)結(jié)合以上信息及圖2填空:圖2中的m=______;
(2)求B、C兩點(diǎn)的坐標(biāo)及圖2中OF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案