【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+ y軸相交于點(diǎn)A,點(diǎn)B與點(diǎn)O關(guān)于點(diǎn)A對(duì)稱.

(1)填空:點(diǎn)B的坐標(biāo)為________;

(2)過點(diǎn)B的直線y=kx+b(其中k<0)與x軸相交于點(diǎn)C,過點(diǎn)C作直線l平行于y軸,P是直線l上一點(diǎn),且PB=PC,求線段PB的長(zhǎng)(用含k的式子表示),并判斷點(diǎn)P是否在拋物線上,說(shuō)明理由.

【答案】(1)(0, );(2)PB=+,點(diǎn)P在拋物線上

【解析】

1)由拋物線解析式可求得A點(diǎn)坐標(biāo)再利用對(duì)稱可求得B點(diǎn)坐標(biāo);

2)可先用k表示出C點(diǎn)坐標(biāo),BBDl于點(diǎn)D,條件可知P點(diǎn)在x軸上方,設(shè)P點(diǎn)縱坐標(biāo)為y可表示出PD、PB的長(zhǎng).在RtPBD,利用勾股定理可求得y,則可求出PB的長(zhǎng),此時(shí)可得出P點(diǎn)坐標(biāo)代入拋物線解析式可判斷P點(diǎn)在拋物線上

1y=﹣x2+的頂點(diǎn)A的坐標(biāo)為(0,),∴原點(diǎn)O關(guān)于點(diǎn)A的對(duì)稱點(diǎn)B的坐標(biāo)為(0,).

故答案為:0,);

2B點(diǎn)坐標(biāo)為(0,),∴直線解析式為y=kx+,解得x=﹣OC=﹣

PB=PC,∴點(diǎn)P只能在x軸上方,如圖過點(diǎn)BBDl于點(diǎn)D,設(shè)PB=PC=mBD=OC=﹣,CD=OB=,PD=PCCD=m

RtPBD,由勾股定理可得PB2=PD2+BD2,m2=(m2+(﹣2,解得m=+,PB=+,∴點(diǎn)P坐標(biāo)為(﹣+).

當(dāng)x=﹣時(shí),代入拋物線解析式可得y=+,∴點(diǎn)P在拋物線上

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABCAC=BC,ACB=90°,以BC為直徑作⊙O,連接OA,交⊙O于點(diǎn)D,過D點(diǎn)作⊙O的切線交AC于點(diǎn)E,連接B、D并延長(zhǎng)交AC于點(diǎn)F.則下列結(jié)論錯(cuò)誤的是( 。

A. ADE∽△ACO B. AOC∽△BFC

C. DEF∽△DOC D. CD2=DFDB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:正方形ABCD中,AB=4,ECD邊中點(diǎn),FAD邊中點(diǎn),AEBDG,交BFH,連接DH.

(1)求證:BG=2DG;

(2)求AH:HG:GE的值;

(3)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為10,點(diǎn)E、F分別在邊BC、CD上,且∠EAF=45°,AHEF于點(diǎn)H,AH=10,連接BD,分別交AE、AH、AF于點(diǎn)P、G、Q.

(1)求CEF的周長(zhǎng);

(2)若EBC的中點(diǎn),求證:CF=2DF;

(3)連接QE,求證:AQ=EQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),與直線交于點(diǎn),點(diǎn)軸上的一個(gè)動(dòng)點(diǎn),設(shè).

1)若的值最小,求的值;

2)若直線分割成兩個(gè)等腰三角形,請(qǐng)求出的值,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為等邊三角形,上的一個(gè)動(dòng)點(diǎn),延長(zhǎng)線上一點(diǎn),且

1)當(dāng)的中點(diǎn)時(shí),求證:

2)如圖1,若點(diǎn)在邊上,猜想線段之間的關(guān)系,并說(shuō)明理由.

3)如圖2,若點(diǎn)的延長(zhǎng)線上,(1)中的結(jié)論是否仍然成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DE分別是ABCAB、BC上的點(diǎn),AD=2BD,BE=CE,若SABC=18,設(shè)ADF的面積為S1,CEF的面積為S2,則S1-S2的值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面宜角坐標(biāo)系xOy中,直線y=x+4x軸,y軸交于點(diǎn)AB.第一象限內(nèi)有一點(diǎn)Pm,n),正實(shí)數(shù)m,n滿足4m+3n=12

1)連接AP,PO,APO的面積能否達(dá)到7個(gè)平方單位?為什么?

2)射線AP平分∠BAO時(shí),求代數(shù)式5m+n的值;

3)若點(diǎn)A′與點(diǎn)A關(guān)于y軸對(duì)稱,點(diǎn)Cx軸上,且2CBO+PA′O=90°,小慧演算后發(fā)現(xiàn)ACP的面積不可能達(dá)到7個(gè)平方單位.請(qǐng)分析并評(píng)價(jià)小薏發(fā)現(xiàn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)邊上,,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案