【題目】在平面直角坐標系xOy中,圖形W在坐標軸上的投影長度定義如下:設點P(x1,y1),Q(x2,y2)是圖形W上的任意兩點.若|x1﹣x2|的最大值為m,則圖形Wx軸上的投影長度lx=M;若|y1﹣y2|的最大值為n,則圖形Wy軸上的投影長度ly=n.如圖1,圖形Wx軸上的投影長度lx=|3﹣1|=2;在y軸上的投影長度ly=|4﹣0|=4.

(1)已知點A(3,3),B(4,1).如圖2所示,若圖形WOAB,則lx   ,ly   

(2)已知點C(4,0),點D在直線y=2x+6上,若圖形WOCD.當lx=ly時,求點D的坐標.

(3)若圖形W為函數(shù)y=x2(a≤x≤b)的圖象,其中0≤a<b.當該圖形滿足lx=ly≤1時,請直接寫出a的取值范圍.

【答案】(1)4;3;(2)(﹣)或(﹣10,﹣14);(3)0≤a<

【解析】

1)確定出點Ay軸的投影的坐標、點Bx軸上投影的坐標,于是可求得問題的答案;
(2)過點PPD⊥x軸,垂足為P.設D(x,2x+6),則PD=2x+6.PC=4-x,然后依據(jù)lx=ly,列方程求解即可;
(3)設A(a,a2)、B(b,b2).分別求得圖形在y軸和x軸上的投影,由lx=ly可得到b+a=1,然后根據(jù)0≤a<b可求得a的取值范圍.

解:(1)A(3,3),

∴點Ay軸上的正投影的坐標為(0,3).

∴△OABy軸上的投影長度ly=3.

B(4,1),

∴點Bx軸上的正投影的坐標為(4,0).

∴△OABx軸上的投影長度lx=4.

故答案為:4;3.

(2)如圖1所示;過點PPDx軸,垂足為P.

D(x,2x+6),則PD=2x+6.

PDx軸,

P(x,0).

PC=4﹣x.

lx=ly,

2x+6=4﹣x,解得;x=﹣

D(﹣,).

如圖2所示:過點DDPx軸,垂足為P.

D(x,2x+6),則PD=﹣2x﹣6.

PDx軸,

P(x,0).

PC=4﹣x.

lx=ly,

﹣2x﹣6=4﹣x,解得;x=﹣10.

D(﹣10,﹣14).

綜上所述,點D的坐標為(﹣,)或(﹣10,﹣14).

(3)如圖3所示:

A(a,a2)、B(b,b2).則CE=b﹣a,DF=b2﹣a2=(b+a)(b﹣a).

lx=ly,

(b+a)(b﹣a)=b﹣a,即(b+a﹣1)(b﹣a)=0.

b≠a,

b+a=1.

又∵0≤a<b,

a+a<1,

0≤a<

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD的各頂點坐標分別為A1,0),B2,0),C22),D0,1);四邊形BFGH的各頂點坐標分別為F4,0),G4,4),H0,2).則下列說法正確的是( 。

A.四邊形ABCD與四邊形BFGH相似但不位似

B.四邊形ABCD與四邊形BFGH位似但不相似

C.四邊形ABCD與四邊形BFGH位似,且位似比為l

D.四邊形ABCD與四邊形BFGH位似,且位似比為l2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某車庫出口處設置有兩段式欄桿,點A是欄桿轉動的支點,點E是欄桿兩段的連接點,當車輛經過時,欄桿AEF升起后的位置如圖1所示(圖2為其幾何圖形).其中ABBC,DCBC,EFBC,EAB=150°,AB=AE=1.2m,BC=2.4m.

(1)求圖2中點E到地面的高度(即EH的長.≈1.73,結果精確到0.01m,欄桿寬度忽略不計);

(2)若一輛廂式貨車的寬度和高度均為2m,這輛車能否駛入該車庫?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(3,6)、B(9,一3),以原點O為位似中心,相似比為,把ABO縮小,則點A的對應點A的坐標是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘漁船正自西向東航行追趕魚群,在A處望見島C在船的北偏東60°方向,前進20海里到達B處,此時望見島C在船的北偏東30°方向,以島C為中心的12海里內為軍事演習的危險區(qū).請通過計算說明:如果這艘漁船繼續(xù)向東追趕魚群是否有進入危險區(qū)的可能.(參考數(shù)據(jù):≈1.4,≈1.7)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點的坐標分別為A(-1,1),B(-3,1),C(-1,4).

1)畫出△ABC關于y軸對稱的圖形;

2)將△ABC繞著點B順時針旋轉90°后得到△A2BC2,請在圖中畫出△A2BC2,并求出線段BC旋轉過程中所掃過的面積(結果保留

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市準備購進甲、乙兩種品牌的文具盒,甲、乙兩種玩具盒的進價和售價如下表,預計購進乙品牌文具盒的數(shù)量y(個)與甲品牌玩具盒數(shù)量x(個)之間的函數(shù)關系如圖所示.

進價(元)

15

30

售價(元)

20

38

1yx之間的函數(shù)關系式是   

2)若超市準備用不超過6000元購進甲、乙兩種文具盒,則至少購進多少個甲種文具盒?

3)在(2)的條件下,寫出銷售所得的利潤W(元)與x(個)之間的關系式,并求出獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBAAC于點D,DEABE.若△ADE的周長為8cm,AB_____ cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,EAD上一點,連接BE,FBE中點,且AF=BF

1)求證:四邊形ABCD為矩形;

2)過點FFGBE,垂足為F,交BC于點G,若BE=BCSBFG=5,CD=4,求CG

查看答案和解析>>

同步練習冊答案