【題目】ABC中,已知∠A=105°,∠B-C=15°,求∠C的度數(shù).

【答案】30°

【解析】

∠B-∠C=15°,可得∠B=∠C+15°,然后根據(jù)三角形內(nèi)角和等于180°求解即可.

∠B-∠C=15°

∠B=∠C+15°,

∵∠A+B+C=180°,

105°+∠C+15°+∠C=180°,

∴∠C=30°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蘇果超市用5000元購進(jìn)一批新品種的蘋果進(jìn)行試銷,由于試銷狀況良好,超市又調(diào)撥11000元資金購進(jìn)該種蘋果,但這次的進(jìn)價比試銷時每千克多了0.5元,購進(jìn)蘋果的數(shù)量是試銷時的2倍。

(1)試銷時該品種蘋果的進(jìn)價是每千克多少元?

(2)如果超市將該品種的蘋果按每千克7元定價出售,當(dāng)大部分蘋果售出后,余下的400千克按定價的七折售完,那么超市在這兩次蘋果銷售中共盈利多少元?(7分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作MECD于點E,1=2.

(1)若CE=1,求BC的長;

(2)求證:AM=DF+ME.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)為(1,0),點的橫坐標(biāo)為2,將點 P旋轉(zhuǎn),使它的對應(yīng)點恰好落在軸上(不與點重合);再將點O逆時針旋轉(zhuǎn)90°得到點.

(1)直接寫出點和點C的坐標(biāo);

(2)求經(jīng)過A,B,C三點的拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A(2,0),B(0,4),作BOC,使BOCABO全等,則點C坐標(biāo)為________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,BAC=αα60°),點DABC內(nèi),且BD=BC,DBC=60°.

1)如圖1, 連接AD,直接寫出∠ABD的度數(shù)(用含α的式子表示);

2)如圖2,BCE=150°,ABE=60°,判斷ABE的形狀并加以證明;

3)在(2)的條件下,連接DE,若∠DEC=45°,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑 ,點C在⊙O上,過點OBC于點E,交⊙O于點D,CDAB.

(1)求證:EOD的中點;

(2)CB=6,求四邊形CAOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1)﹣b2×(﹣b2×(﹣b3

2)(xy3×(y22×(y25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,把三角形ABC向上平移3個單位長度,再向右平移2個單位長度,得到三角形A1B1C1.

(1)在圖中畫出三角形A1B1C1;

(2)寫出點A1,B1的坐標(biāo);

(3)在y軸上是否存在一點P,使得三角形BCP與三角形ABC面積相等?若存在,請直接寫出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案