(3a)2b3÷(________)=b2

答案:
解析:

12a2b


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

如圖a,梯形ABCD中,AB∥CD,AB=a,CD=b,點E、F分別是兩腰AD、BC上的點,且EF∥AB,設(shè)EF到CD、AB的距離分別為d1、d2,某同學(xué)在對這一圖形進行研究時,發(fā)現(xiàn)如下事實:
①當
d1
d2
=
1
1
時,有EF=
a+b
2
;
d1
d2
=
1
2
時,有EF=
a+2b
3
;
d1
d2
=
1
3
時,有EF=
a+3b
4
;
d1
d2
=
1
4
時,有EF=
a+4b
5
;
②當
d1
d2
=
2
1
時,有EF=
2a+b
3
;當
d1
d2
=
3
1
時,有EF=
3a+b
4
;
d1
d2
=
4
1
時,有EF=
4a+b
5
;當
d1
d2
=
5
1
時,有EF=
5a+b
6

根據(jù)以上結(jié)論,解答下列問題:
(1)猜想當
d1
d2
=
1
n
d1
d2
=
m
1
時,分別能得到什么結(jié)論(其中m、n均為正整數(shù))?
(2)進一步猜想當
d1
d2
=
m
n
時,有何結(jié)論(其中m、n均為正整數(shù))?并證明你的結(jié)論;
(3)如圖b,有一塊梯形耕地ABCD,AB∥CD,CD=100米,AB=300米,AD=500米,在AD上取兩點E、F,使DE=200米,EF=150米,分別從E、F兩處為起點開挖兩條平行于兩底的水渠,直到另一腰,求這兩條水渠的總長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖1,梯形ABCD中,AD∥BC,BC=a,AD=b,點E、F分別是兩腰AB、CD上的點,且EF∥AD,設(shè)AE=d1、BE=d2,
研究、發(fā)現(xiàn):
(1)當
d1
d2
=
1
1
時,有EF=
a+b
2

d1
d2
=
1
2
時,有EF=
a+2b
3
;
d1
d2
=
1
3
時,有EF=
a+3b
4
;
(2)當
d1
d2
=
2
1
時,有EF=
2a+b
3
;當
d1
d2
=
3
1
時,有EF=
3a+b
4
;
d1
d2
=
4
1
時,有EF=
4a+b
5

填空:①當
d1
d2
=
1
4
時,有EF=
 
;當
d1
d2
=
1
n
時,EF=
 

猜想、證明
d1
d2
=
m
1
時,分別能得到什么結(jié)論(其中m、n均為正整數(shù))并證明你的結(jié)論;精英家教網(wǎng)
③進一步猜想當
d1
d2
=
m
n
時,有何結(jié)論(其中m、n均為正整數(shù))寫出你的結(jié)論.
解決問題
(3)如圖2,有一塊梯形木框ABCD,AD∥BC,AD=1米,BC=3米,AB=5米,要在中間加兩個橫檔.操作如下:在AD上取兩點E、F,使AE=2米,EF=1.5米,分別從E、F兩處做與兩底平行的橫檔EM、FN,求需要木條的總長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算:
(1)
3
a+1
-
12
a2-1
-
6
1-a
;
(2)
a-3
2a-4
÷(
5
a-2
-a-2);
(3)(
x+2
x2-2x
-
x-1
x2-4x+4
)÷
x-4
x
•(2-x)2;
(4)(2a-2b33•(-3ab-2-2÷(-a-3b44

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知4a-3b3=7,3a+2b3=9,則10a+b3=
25
25

查看答案和解析>>

同步練習冊答案