【題目】已知,如圖,在平面直角坐標系中,直線分別與軸交于與反比例函數的圖象交于點,軸于點,.
(1)求反比例函數及一次函數的解析式.
(2)當為何值時一次函數的值大于反比例函數的值.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據可求出點A、B、C的坐標,然后用待定系數法求出反比例函數及一次函數的解析式即可;
(2)聯立反比例函數解析式和一次函數解析式求出點D坐標,然后根據函數圖像和交點坐標即可求得.
解:(1),
,
軸于點,
∴,
,
,,,
設反比例函數解析式為:,將點代入可得:k=-6,
即反比例函數解析式為:,
設一次函數解析式為:y=kx+b(k≠0),將,代入可得:,
解得:,
即一次函數解析式為:y=;
(2)聯立反比例函數解析式和一次函數解析式可得:,
解得:或,
∴D(6,-1),
由圖像得:一次函數的值大于反比例函數的值時x的取值范圍是:x<-2或0<x<6.
科目:初中數學 來源: 題型:
【題目】如圖所示.線段AB、DC分別表示甲、乙兩座建筑物的高.AB⊥BC,DC⊥BC,兩建筑物間距離BC=30米,若甲建筑物高AB=28米,在A點測得D點的仰角α=45°,則乙建筑物高DC=______米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,BC=3,AC=4,BD平分∠ABC,將△ABC繞著點A旋轉后,點B、C的對應點分別記為B1、C1,如果點B1落在射線BD上,那么CC1的長度為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A、B、C是直線l上的三個點,∠DAB=∠DBE=∠ECB=a,且BD=BE.
(1)求證:AC=AD+CE;
(2)若a=120°,點F在直線l的上方,△BEF為等邊三角形,補全圖形,請判斷△ACF的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線OD與x軸所夾的銳角為30°,OA1的長為1,△A1A2B1、△A2A3B2、△A3A4B3、…、△AnAn+1Bn均為等邊三角形,點A1、A2、A3、…、An+1在x軸的正半軸上依次排列,點B1、B2、B3、…、Bn在直線OD上依次排列,那么B2019的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們約定,在平面直角坐標系中兩條拋物線有且只有一個交點時,我們稱這兩條拋物線為“共點拋物線”,這個交點為“共點”.
(1)判斷拋物線y=x2與y=﹣x2是“共點拋物線”嗎?如果是,直接寫出“共點”坐標;如果不是,說明理由;
(2)拋物線y=x2﹣2x與y=x2﹣2mx﹣3是“共點拋物線”,且“共點”在x軸上,求拋物線y=x2﹣2mx﹣3的函數關系式;
(3)拋物線L1:y=﹣x2+2x+1的圖象如圖所示,L1與L2:y=﹣2x2+mx是“共點拋物線”;
①求m的值;
②點P是x軸負半軸上一點,設拋物線L1、L2的“共點”為Q,作點P關于點Q的對稱點P′,以PP′為對角線作正方形PMP′N,當點M或點N落在拋物線L1上時,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】鮮豐水果店計劃用元/盒的進價購進一款水果禮盒以備銷售.
據調查,當該種水果禮盒的售價為元/盒時,月銷量為盒,每盒售價每增長元,月銷量就相應減少盒,若使水果禮盒的月銷量不低于盒,每盒售價應不高于多少元?
在實際銷售時,由于天氣和運輸的原因,每盒水果禮盒的進價提高了,而每盒水果禮盒的售價比(1)中最高售價減少了,月銷量比(1)中最低月銷量盒增加了,結果該月水果店銷售該水果禮盒的利潤達到了元,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】深圳某學校為構建書香校園,擬購進甲、乙兩種規(guī)格的書柜放置新購置的圖書.已知每個甲種書柜的進價比每個乙種書柜的進價高20%,用3600元購進的甲種書柜的數量比用4200元購進的乙種書柜的數量少4臺.
(1)求甲、乙兩種書柜的進價;
(2)若該校擬購進這兩種規(guī)格的書柜共60個,其中乙種書柜的數量不大于甲種書柜數量的2倍.請您幫該校設計一種購買方案,使得花費最少.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com