【題目】如圖,在平面直角坐標(biāo)系中,AB=AC=10,線段BC在軸上,BC=12,點(diǎn)B的坐標(biāo)為(﹣3,0),線段ABy軸于點(diǎn)E,過AADBCD,動點(diǎn)P從原點(diǎn)出發(fā),以每秒3個單位的速度沿x軸向右運(yùn)動,設(shè)運(yùn)動的時間為t秒.

(1)點(diǎn)E的坐標(biāo)為(   ,   );

(2)當(dāng)BPE是等腰三角形時,求t的值;

(3)若點(diǎn)P運(yùn)動的同時,ABCB為位似中心向右放大,且點(diǎn)C向右運(yùn)動的速度為每秒2個單位,ABC放大的同時高AD也隨之放大,當(dāng)以EP為直徑的圓與動線段AD所在直線相切,求t的值和此時C點(diǎn)的坐標(biāo).

【答案】(1)E(0, 4);(2)t=t=1t=;(3)當(dāng)t=1, C(11,0)

【解析】

(1) 首先求出直線AB的解析式, 即可得出結(jié)論;

(2) 先求出BE=5, 進(jìn)而分別利用①當(dāng)BE=BP,②當(dāng)EB=EP,③當(dāng)PB=PE, 得出的值即

;

(3) 首先得出△PGF∽△POE, 再利用勾股定理得, 進(jìn)而求出t的值以及C點(diǎn)坐標(biāo).

解:(1)AB=AC,ADBC,

BD=CD=6,

AB=10,

AD=8,

A(3,8),

設(shè)直線AB的解析式為:y=kx+b,則,

解得:,

∴直線AB的解析式為:y=x+4,

E(0,4),

故答案為:0,4;

(2)B(﹣3,0),E(0,4)

BE=5,

當(dāng)BPE是等腰三角形有三種情況:

①當(dāng)BE=BP時,3+3t=5,解得:t=;

②當(dāng)EB=EP時,3t=3,解得:t=1;

③當(dāng)PB=PE時,

PB=PE,AB=AC,ABC=PBE,

∴∠PEB=ACB=ABC,

∴△PBE∽△ABC,

=,

=,解得:t=

綜上:t=t=1t=;

(3)由題意得:C(9+2t,0),

BC=12+2t,BD=CD=6+t,OD=3+t,

設(shè)FEP的中點(diǎn),連接OF,作FHAD,F(xiàn)GOP,

FGEO,

∴△PGF∽△POE,

PG=OG=t,F(xiàn)G=EO=2,

F(t,2),

FH=GD=OD﹣OG=3+t﹣t=3﹣t,

∵⊙F與動線段AD所在直線相切,FH=EP=3﹣t,

RtEOP中:EP2=OP2+EO2

4(3﹣t)2=(3t)2+16

解得:t1=1,t2=﹣(舍去),

∴當(dāng)t=1時,⊙F與動線段AD所在直線相切,此時C(11,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線在平面直角坐標(biāo)系中與軸交于點(diǎn)A,點(diǎn)B(-3,3)也在直線上,將點(diǎn)B先向右平移1個單位長度,再向下平移2個單位長度得到點(diǎn)C,點(diǎn)C也在直線上.

(1)求點(diǎn)C的坐標(biāo)和直線的解析式;

(2)已知直線經(jīng)過點(diǎn)B,與軸交于點(diǎn)E,求△ABE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=mx2﹣2mx﹣3m(m>0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)M為拋物線的頂點(diǎn),且OC=OB.

(1)求拋物線的解析式.

(2)若拋物線上有一點(diǎn)P,連PC交線段BMQ點(diǎn),且SBPQ=SCMQ,求P點(diǎn)的坐標(biāo).

(3)把拋物線沿x軸正半軸平移n個單位,使平移后的拋物線交直線BCE、F兩點(diǎn),且E、F關(guān)于點(diǎn)B對稱,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于實數(shù)a,b,我們可以用min{a,b}表示ab兩數(shù)中較小的數(shù),例如min{3,-1}=-1,min{2,2}2. 類似地,若函數(shù)y1、y2都是x的函數(shù),則ymin{y1, y2}表示函數(shù)y1y2取小函數(shù)

1)設(shè)y1x,y2,則函數(shù)ymin{x }的圖像應(yīng)該是 中的實線部分.

2)請在下圖中用粗實線描出函數(shù)ymin{(x2)2, (x2)2}的圖像,并寫出該圖像的三條不同性質(zhì):

;

;

3)函數(shù)ymin{(x4)2(x2)2}的圖像關(guān)于 對稱.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以△ABC的邊AB,AC向外作兩個等邊三角形△ABD,△ACE.連接BE、CD交點(diǎn)F,連接AF

1)求證:△ACD≌△AEB

2)求證:AF+BF+CF=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人同時開車從A地出發(fā),沿一條筆直的公路勻速前往相距400千米的B地,1小時后,甲發(fā)現(xiàn)有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%繼續(xù)開往B地(所有掉頭和取物品的時間忽略不計),甲乙兩人間的距離y千米與甲開車行駛的時間x小時之間的部分函數(shù)圖象如圖所示,當(dāng)甲到達(dá)B地時,乙離B地的距離是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)習(xí)小組在研究函數(shù)y=x3﹣2x的圖象與性質(zhì)時,已列表、描點(diǎn)并畫出了圖象的一部分.

x

﹣4

﹣3.5

﹣3

﹣2

﹣1

0

1

2

3

3.5

4

y

0

(1)請補(bǔ)全函數(shù)圖象;

(2)方程x3﹣2x=﹣2實數(shù)根的個數(shù)為   ;

(3)觀察圖象,寫出該函數(shù)的兩條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一只不透明的布袋中裝有紅球 3 個、黃球 1 個,這些球除顏色外都相同,均勻搖勻.

(1)從布袋中一次摸出 1 個球,計算摸出的球恰是黃球的概率;

(2)從布袋中一次摸出 2 個球,計算摸出的球恰是一紅一黃的概率(畫樹狀圖列表的方法寫出計算過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCO放在平面直角坐標(biāo)系中,其中頂點(diǎn)B的坐標(biāo)為(5,3),E是BC邊上一點(diǎn),將ABE沿AE翻折,點(diǎn)B剛好與OC邊上的點(diǎn)D重合,過點(diǎn)E的反比例函數(shù)y=的圖象與邊AB交于點(diǎn)F,則線段AF的長為_____

查看答案和解析>>

同步練習(xí)冊答案