(2011•南充)如圖,點(diǎn)E是矩形ABCD中CD邊上一點(diǎn),△BCE沿BE折疊為△BFE,點(diǎn)F落在AD上.
(1)求證:△ABE∽△DFE
(2)若sin∠DFE=,求tan∠EBC的值.

(1)證明:∵四邊形ABCD是矩形
∴∠A=∠D=∠C=90°,
∵△BCE沿BE折疊為△BFE,
∴∠BFE=∠C=90°,
∴∠AFB+∠DFE=180°﹣∠BFE=90°,
又∠AFB+∠ABF=90°,
∴∠ABF=∠DFE,
∴△ABE∽△DFE,
(2)解:在Rt△DEF中,sin∠DFE==,
∴設(shè)DE=a,EF=3a,DF==2a,
∵△BCE沿BE折疊為△BFE,
∴CE=EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF,
又由(1)△ABE∽△DFE,
===,
∴tan∠EBF==,
tan∠EBC=tan∠EBF=

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•南充)如圖,點(diǎn)E是矩形ABCD中CD邊上一點(diǎn),△BCE沿BE折疊為△BFE,點(diǎn)F落在AD上.
(1)求證:△ABE∽△DFE
(2)若sin∠DFE=,求tan∠EBC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•南充)如圖,△ABC和△CDE均為等腰直角三角形,點(diǎn)B,C,D在一條直線上,點(diǎn)M是AE的中點(diǎn),下列結(jié)論:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正確結(jié)論的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)
C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•南充)如圖,直線DE經(jīng)過點(diǎn)A,DE∥BC,∠B=60°,下列結(jié)論成立的是( 。
A.∠C="60°"B.∠DAB=60°
C.∠EAC="60°"D.∠BAC=60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(湖北宜昌卷)數(shù)學(xué) 題型:解答題

(2011•南充)如圖,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中點(diǎn).
(1)求證:△MDC是等邊三角形;
(2)將△MDC繞點(diǎn)M旋轉(zhuǎn),當(dāng)MD(即MD′)與AB交于一點(diǎn)E,MC(即MC′)同時(shí)與AD交于一點(diǎn)F時(shí),點(diǎn)E,F(xiàn)和點(diǎn)A構(gòu)成△AEF.試探究△AEF的周長(zhǎng)是否存在最小值.如果不存在,請(qǐng)說明理由;如果存在,請(qǐng)計(jì)算出△AEF周長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案