【題目】已知:在平行四邊形ABCD中,AB︰BC=3︰2.
(1)根據(jù)條件畫圖:作∠BCD的平分線,交邊AB于點(diǎn)E,取線段BE的中點(diǎn)F,連接DF交CE于點(diǎn)G.
(2)設(shè),那么向量=______.(用向量、表示),并在圖中畫出向量在向量和方向上的分向量.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2+2mx﹣3(m>0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,該拋物線的頂點(diǎn)D的縱坐標(biāo)是﹣4.
(1)求點(diǎn)A、B的坐標(biāo);
(2)設(shè)直線與直線AC關(guān)于該拋物線的對(duì)稱軸對(duì)稱,求直線的表達(dá)式;
(3)平行于x軸的直線b與拋物線交于點(diǎn)M(x1,y1)、N(x2,y2),與直線交于點(diǎn)P(x3,y3).若x1<x3<x2,結(jié)合函數(shù)圖象,求x1+x2+x3的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D的切線交BC于點(diǎn)E.
(1)求證:EB=EC;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ODEC是正方形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為3正方形的頂點(diǎn)與原點(diǎn)重合,點(diǎn)在軸,軸上。反比例函數(shù)的圖象交于點(diǎn),連接,.
(1)求反比例函數(shù)的解析式;
(2)過點(diǎn)作軸的平行線,點(diǎn)在直線上運(yùn)動(dòng),點(diǎn)在軸上運(yùn)動(dòng).
①若是以為直角頂點(diǎn)的等腰直角三角形,求的面積;
②將“①”中的“以為直角頂點(diǎn)的”去掉,將問題改為“若是等腰直角三角形”,的面積除了“①”中求得的結(jié)果外,還可以是______.(直接寫答案,不用寫步驟)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形有一邊上的中線恰好等于這邊的長,那么稱這個(gè)三角形為“勻稱三角形”,這條中線為“勻稱中線”.
(1)如圖①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“勻稱三角形”.
①請(qǐng)判斷“勻稱中線”是哪條邊上的中線,
②求BC:AC:AB的值.
(2)如圖②,△ABC是⊙O的內(nèi)接三角形,AB>AC,∠BAC=45°,S△ABC=2,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°得到△ADE,點(diǎn)B的對(duì)應(yīng)點(diǎn)為D,AD與⊙O交于點(diǎn)M,若△ACD是“勻稱三角形”,求CD的長,并判斷CM是否為△ACD的“勻稱中線”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,BC=16,點(diǎn)D為BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、點(diǎn)C重合).以D為頂點(diǎn)作∠ADE=∠B,射線DE交AC邊于點(diǎn)E,過點(diǎn)A作AF⊥AD交射線DE于點(diǎn)F.
(1)求證:ABCE=BDCD;
(2)當(dāng)DF平分∠ADC時(shí),求AE的長;
(3)當(dāng)△AEF是等腰三角形時(shí),求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E,點(diǎn)F是點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn),連接AF、BF
(1)求AE和BE的長;
(2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點(diǎn)B沿BD方向所經(jīng)過的線段長度).當(dāng)點(diǎn)F分別平移到線段AB、AD上時(shí),直接寫出相應(yīng)的m的值;
(3)如圖②,將△ABF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<180°),記旋轉(zhuǎn)中的△ABF為△A′BF′,在旋轉(zhuǎn)過程中,設(shè)A′F′所在的直線與直線AD交于點(diǎn)P,與直線BD交于點(diǎn)Q.是否存在這樣的P、Q兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時(shí)DQ的長;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)函數(shù)的圖象關(guān)于y軸對(duì)稱,我們就稱這個(gè)函數(shù)為偶函數(shù).
(1)按照上述定義判斷下列函數(shù)中,_____是偶函數(shù).
.y=3x .y=x+1 .y= .y=x2
(2)若二次函數(shù)y=x2+bx﹣4是偶函數(shù),該函數(shù)圖象與x軸交于點(diǎn)A和點(diǎn)B,頂點(diǎn)為P,求△ABP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點(diǎn)A與點(diǎn)C重合,再展開,折痕EF交AD邊于點(diǎn)E,交BC邊于點(diǎn)F,分別連結(jié)AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長;
(3)在線段AC上是否存在一點(diǎn)P,使得2AE2=AC·AP?若存在,請(qǐng)說明點(diǎn)P的位置,并予以證明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com